Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site
Abstract
:1. Introduction
2. Test Site Description
2.1. Geographic and Geological Settings
2.2. The Cortes de Pallas (Valencia, Spain) 2015 Rockfall Event
3. Methods and Data
4. Results
4.1. Definition of the Size of the Block
4.2. Simulation at the Urban Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erisman, T.H.; Abele, G. Dynamics of Rockslides and Rockfalls; Springer: Berlin/Heidelberg, Germany, 2002; Volume 66, ISBN 978-3-642-08653-3. [Google Scholar]
- Emmer, A. Geographies and Scientometrics of Research on Natural Hazards. Geosciences 2018, 8, 382. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L.K.A.; Gerber, W.; Jaboyedoff, M. Rockfall characterisation and structural protection—A review. Nat. Hazards Earth Syst. Sci. 2011, 11, 2617–2651. [Google Scholar] [CrossRef] [Green Version]
- Dorren, L.K.A. A review of rockfall mechanics and modelling approaches. Prog. Phys. Geogr. 2003, 27, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Crosta, G.B.; Agliardi, F.; Frattini, P.; Lari, S. Key issues in rock fall modeling, hazard and risk assessment for rockfall protection. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Springer International Publishing: Cham, Switzerland, 2015; pp. 43–58. ISBN 9783319090573. [Google Scholar]
- Hernández Gutiérrez, L.E.; Santamarta Cerezal, J.C.; Olalla Marañón, C.; Rodríguez Losada, J.A.; Muñiz Menéndez, M.; González-Gallego, F.J.; Rodríguez Martín, J.; Pomares Rodríguez, M.; López Felipe, M.; Lomoschitz Mora-Figueroa, A.; et al. Ingeniería Geológica en Terrenos Volcánicos. Métodos, Técnicas y Experiencias en las Islas Canarias; Hernández Gutiérrez, L.E., Santamarta Cerezal, J.C., Eds.; Ilustre Colegio Oficial de Geólogos: Madrid, Spain, 2016; ISBN 978-84-608-5072-4. [Google Scholar]
- Sturzenegger, M.; Sartori, M.; Jaboyedoff, M.; Stead, D. Regional deterministic characterization of fracture networks and its application to GIS-based rock fall risk assessment. Eng. Geol. 2007, 94, 201–214. [Google Scholar] [CrossRef]
- Lambert, C.; Thoeni, K.; Giacomini, A.; Casagrande, D.; Sloan, S. Rockfall hazard analysis from discrete fracture network modelling with finite persistence discontinuities. Rock Mech. Rock Eng. 2012, 45, 871–884. [Google Scholar] [CrossRef]
- Paredes, C.; Sarro, R.; Ramos, M. Estimación preliminar de los alcances por caída de bloques en la sierra de La Cabrera, Madrid, España. Rev. Mex. Cienc. Geol. 2015, 32, 475–491. [Google Scholar]
- Abellán, A.; Calvet, J.; Vilaplana, J.; Blanchard, J. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 2010, 119, 162–171. [Google Scholar] [CrossRef]
- Kromer, R.A.; Hutchinson, D.J.; Lato, M.J.; Gauthier, D.; Edwards, T. Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management. Eng. Geol. 2015, 195, 93–103. [Google Scholar] [CrossRef]
- Royán Cordero, M.J. Caracterización y Predicción de Desprendimientos de Rocas Mediante LiDAR Terrestre. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2015. [Google Scholar]
- Walter, M.; Schwaderer, U.; Joswig, M. Seismic monitoring of precursory fracture signals from a destructive rockfall in the Vorarlberg Alps, Austria. Nat. Hazards Earth Syst. Sci. 2012, 12, 3545–3555. [Google Scholar] [CrossRef] [Green Version]
- Bourrier, F.; Hungr, O. Rockfall Dynamics: A Critical Review of Collision and Rebound Models. In Rockfall Engineering; Nicot, S., Lambert, F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 175–209. ISBN 9781848212565. [Google Scholar]
- Ruiz-Carulla, R.; Corominas, J.; Mavrouli, O. A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 2015, 12, 815–825. [Google Scholar] [CrossRef] [Green Version]
- Corominas, J.; Mavrouli, O.; Santana, D.; Moya, J. Simplified approach for obtaining the block volume distribution of fragmental rockfalls. In Landslides and Engineered Slopes; CRC Press: Boca Raton, FL, USA, 2013; pp. 1159–1164. [Google Scholar]
- Ruiz-Carulla, R.; Corominas, J.; Mavrouli, O. A fractal fragmentation model for rockfalls. Landslides 2017, 14, 875–889. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Ullman, S. The Interpretation of Visual Motion; Massachusetts Institute of Technology Press: Oxford, UK, 1979; ISBN 026221007X. [Google Scholar]
- Abellán, A.; Derron, M.-H.; Jaboyedoff, M. “Use of 3D Point Clouds in Geohazards” Special Issue: Current Challenges and Future Trends. Remote Sens. 2016, 8, 130. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, Y.; Jiang, D.; Kang, Y. DEM generation in cloudy-rainy mountainous area with multi-baseline SAR interferometry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Washington, DC, USA, 2018; Volume 10611. [Google Scholar]
- Crosetto, M.; Pérez Aragues, F. Radargrammetry and SAR interferometry for DEM generation: Validation and data fusion. In Proceedings of the SAR Workshop: CEOS Committee on Earth Observation Satellites, Toulouse, France, 26–29 October 1999; Harris, R.A., Ouwehand, L., Eds.; European Space Agency: Paris, France, 2000; Volume 450, p. 367. [Google Scholar]
- Dong, Y.; Zhang, L.; Balz, T.; Luo, H.; Liao, M. Radargrammetric DSM generation in mountainous areas through adaptive-window least squares matching constrained by enhanced epipolar geometry. ISPRS J. Photogramm. Remote Sens. 2018, 137, 61–72. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Vastaranta, M.; Coops, N.C.; Pitt, D.; Woods, M. The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Brodu, N.; Lague, D. 3D point cloud classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; Volume 14, p. 4368. [Google Scholar]
- Lucieer, A.; de Jong, S.M.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Tomás, R.; Abellán, A.; Cano, M.; Riquelme, A.; Tenza-Abril, A.J.; Baeza-Brotons, F.; Saval, J.M.M.; Jaboyedoff, M. A multidisciplinary approach for the investigation of a rock spreading on an urban slope. Landslides 2017, 15, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, A.; Tomás, R.; Abellán, A. Characterization of rock slopes through slope mass rating using 3D point clouds. Int. J. Rock Mech. Min. Sci. 2016, 84, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Jordá Bordehore, L.; Riquelme, A.; Cano, M.; Tomás, R. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. Int. J. Rock Mech. Min. Sci. 2017, 97, 24–32. [Google Scholar] [CrossRef]
- Riquelme, A.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Slob, S.; van Knapen, B.; Hack, H.R.G.K.; Turner, K.; Kemeny, J. Method for Automated Discontinuity Analysis of Rock Slopes with Three-Dimensional Laser Scanning. Transp. Res. Rec. 2005, 1913, 187–194. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Forlani, G.; Roncella, R.; Voyat, H.I. Advanced geostructural survey methods applied to rock mass characterization. Rock Mech. Rock Eng. 2009, 42, 631–665. [Google Scholar] [CrossRef]
- Sturzenegger, M.; Stead, D.; Elmo, D. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng. Geol. 2011, 119, 96–111. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Metzger, R.; Oppikofer, T.; Couture, R.; Derron, M.-H.; Locat, J.; Turmel, D. New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software. In Rock Mechanics: Meeting Society’s Challenges and Demands, Proceedings of the 1st Canada–U.S. Rock Mechanics Symposium, Vancouver, Canada, 27–31 May 2007; Taylor & Francis Group: London, UK, 2007; Volume 1, pp. 61–68. [Google Scholar]
- Lato, M.J.; Vöge, M. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int. J. Rock Mech. Min. Sci. 2012, 54, 150–158. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhu, H. A new method for automated discontinuity trace mapping on rock mass 3D surface model. Comput. Geosci. 2016, 89, 118–131. [Google Scholar] [CrossRef]
- Wang, X.; Zou, L.; Shen, X.; Ren, Y.; Qin, Y. A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud. Comput. Geosci. 2017, 99, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Kemeny, J.; Jiang, Q.; Pan, Z. Automatic extraction of blocks from 3D point clouds of fractured rock. Comput. Geosci. 2017, 109, 149–161. [Google Scholar] [CrossRef]
- Riquelme, A.; Abellán, A.; Tomás, R. Discontinuity spacing analysis in rock masses using 3D point clouds. Eng. Geol. 2015, 195, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Generalitat Valenciana Riesgo de deslizamientos y desprendimientos (Polígonos) (COPUT-1991). 1991. Available online: http://www.habitatge.gva.es/es/web/sistema-de-informacion-territorial/serie-tematica-de-la-antigua-coput (accessed on 29 November 2018).
- Dupuy de Lome y Marín de la Bárcena (1960). Mapa geológico de España 1:50.000. Hoja de Jalance, Num. 745. Available online: http://info.igme.es/cartografiadigital/geologica/Geo50.aspx (accessed on 29 November 2018).
- Instituto Geológico y Minero de España BDMoves. 2016. Available online: http://datos.gob.es/en/catalogo/ea0010987-base-de-datos-de-movimientos-del-terreno-bdmoves (accessed on 29 November 2018).
- AgiSoft PhotoScan Professional (Version 1.2.6) (Software). 2016. Available online: http://www.agisoft.com/downloads/installer/ (accessed on 29 November 2018).
- Instituto Geográfico Nacional Centro de Descargas del CNIG (IGN). Available online: http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en (accessed on 29 November 2018).
- Riquelme, A.; Abellán, A.; Tomás, R.; Jaboyedoff, M. Discontinuity Set Extractor 2014. Available online: https://github.com/adririquelme/DSE (accessed on 29 November 2018).
- Ester, M.; Kriegel, H.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Riquelme, A.; Tomás, R.; Cano, M.; Pastor, J.L.; Abellán, A. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech. Rock Eng. 2018, 51, 3005–3028. [Google Scholar] [CrossRef]
- Palmström, A. Measurement and characterizations of rock mass jointing. In In-Situ Characterization of Rocks—Chapter 2; Palmström, A., Sharma, V.I., Saxena, K., Eds.; A.A. Balkema Publishers: Rotterdam, The Netherlands, 2001; pp. 1–40. ISBN 9789058092373. [Google Scholar]
- RocPro3D 2014. Available online: http://www.rocpro3d.com/rocpro3d_en.php (accessed on 29 November 2018).
- Lendínez González, A.; de Tena-Dávila Ruiz, M. Mapa geológico de la hoja 745 (Jalance). Mapa geológico de España. E 1:50000. 2° serie (MAGNA). 2010. Available online: http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=745 (accessed on 29 November 2018).
- Varnes, D.J. Slope Movement Types and Processes. In TRB Special Report 176, Landslides: Analysis and Control; Transportation Research Board: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Hutchinson, J.N. General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Volume 2, pp. 3–35. [Google Scholar]
- Pfeiffer, T.J.; Higgins, J.D. Rockfall hazard analysis using the Colorado Rockfall Simulation Program. Transp. Res. Rec. 1990, 1288, 117–126. [Google Scholar]
- Budetta, P.; Santo, A. Morphostructural evolution and related kinematics of rockfalls in Campania (southern Italy): A case study. Eng. Geol. 1994, 36, 197–210. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Wieczorek, G.F. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat. Hazards Earth Syst. Sci. 2003, 3, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Mateos, R.M.; García-Moreno, I.; Reichenbach, P.; Herrera, G.; Sarro, R.; Rius, J.; Aguiló, R.; Fiorucci, F. Calibration and validation of rockfall modelling at regional scale: Application along a roadway in Mallorca (Spain) and organization of its management. Landslides 2016, 13, 751–763. [Google Scholar] [CrossRef]
- Sarro, R.; Mateos, R.M.; García-Moreno, I.; Herrera, G.; Reichenbach, P.; Laín, L.; Paredes, C. The Son Poc rockfall (Mallorca, Spain) on the 6th of March 2013: 3D simulation. Landslides 2014, 11, 493–503. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Hazzard, J. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- Li, L.; Lan, H. Probabilistic modeling of rockfall trajectories: A review. Bull. Eng. Geol. Environ. 2015, 74, 1163–1176. [Google Scholar] [CrossRef]
PARAMETERS Lithological Units | 1 Dolostone | 2 Calcarenite and Sandstone | 3 Calcarenite and Limestone | 4 Green Marl | 5 Debris |
---|---|---|---|---|---|
RESTITUTION COEFFICIENT | |||||
Mean normal value μ_Rn (-) | 0.67 | 0.65 | 0.67 | 0.58 | 0.42 |
Mean tangential value μ_Rt (-) | 0.88 | 0.86 | 0.79 | 0.72 | 0.69 |
Standard.-Deviation σ_R (-) | 0.011 | 0.012 | 0.0135 | 0.014 | 0.012 |
Limit velocity V_R(lim) (m/s) | 10 | 10 | 10 | 10 | 10 |
Limit Std.-Deviation σ_R(lim) (-) | 0.005 | 0.006 | 0.01 | 0.011 | 0.006 |
LATERAL DEVIATION | |||||
Standard.-Deviation σ_ θh (°) | 9 | 10 | 8 | 8 | 5.5 |
Limit velocity V_θ h(lim) (m/s) | 10 | 10 | 10 | 10 | 10 |
Limit Std.-Deviation σ_ θ h(lim) (°) | 4.5 | 4.5 | 4.15 | 4 | 2.75 |
REBOUND FLATTENING | |||||
Standard.-Deviation σ_ θv (°) | 1 | 1 | 1 | 1 | 1 |
Limit velocity V_θ v(lim) (m/s) | 10 | 10 | 10 | 10 | 10 |
Limit Std.-Deviation σ_ θ v(lim) (°) | 2 | 2 | 2 | 2 | 2 |
FRICTION COEFFICIENT | |||||
Mean value μ_k (-) | 0.4 | 0.45 | 0.52 | 0.6 | 0.72 |
Standard.-Deviation σ_k (-) | 0.04 | 0.045 | 0.045 | 0.045 | 0.042 |
Limit velocity V_k(lim) (m/s) | 10 | 10 | 10 | 10 | 10 |
Limit Std.-Deviation σ_k(lim) (-) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
TRANSITION PARAMETERS | |||||
Angle β _lim (acute case) (°) | 4 | 3 | 4 | 4 | 6 |
Angle β _lim’ (obtuse case) (°) | 30 | 25 | 35 | 35 | 45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarro, R.; Riquelme, A.; García-Davalillo, J.C.; Mateos, R.M.; Tomás, R.; Pastor, J.L.; Cano, M.; Herrera, G. Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site. Remote Sens. 2018, 10, 1923. https://doi.org/10.3390/rs10121923
Sarro R, Riquelme A, García-Davalillo JC, Mateos RM, Tomás R, Pastor JL, Cano M, Herrera G. Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site. Remote Sensing. 2018; 10(12):1923. https://doi.org/10.3390/rs10121923
Chicago/Turabian StyleSarro, Roberto, Adrián Riquelme, Juan Carlos García-Davalillo, Rosa María Mateos, Roberto Tomás, José Luis Pastor, Miguel Cano, and Gerardo Herrera. 2018. "Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site" Remote Sensing 10, no. 12: 1923. https://doi.org/10.3390/rs10121923
APA StyleSarro, R., Riquelme, A., García-Davalillo, J. C., Mateos, R. M., Tomás, R., Pastor, J. L., Cano, M., & Herrera, G. (2018). Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site. Remote Sensing, 10(12), 1923. https://doi.org/10.3390/rs10121923