Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm
Abstract
:1. Introduction
2. Experimental Area and Study Methods
2.1. Study Area and Stress Experiment
2.2. Field Sampling Measurement
2.3. Airborne Hyperspectral Remote Sensing Image
2.4. Spectral Indices for This Research
2.5. Modeling and Optimization
3. Results and Analysis
3.1. Effects of Nitrogen Stress on LNC and Canopy Spectra of Wheat
3.2. Spectral Indices Optimized for LNC Estimation
3.3. Comprehensive Comparison of Various Indices for Estimating LNC
3.4. LNC Estimation Modeling for OMIS
3.5. LNC Remote Sensing Mapping
3.5.1. Extraction of the Wheat Coverage Area
3.5.2. LNC Mapping and Accuracy Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moharana, S.; Dutta, S. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2016, 122, 17–29. [Google Scholar] [CrossRef]
- Liang, L.; Yang, M.; Deng, K.; Zhang, L.; Lin, H.; Liu, Z.X. A new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecol. Sin. 2011, 31, 6594–6605. [Google Scholar]
- Stone, M.L.; Solie, J.B.; Ruan, W.R.; Ringer, J.D. Use of Spectral Radiance for Correcting In-season Fertilizer Nitrogen Deficiencies in Winter Wheat. Trans. ASAE 1996, 39, 1623–1631. [Google Scholar] [CrossRef]
- Wei, F.; Zhu, B.Y.; Tian, Y.C.; Li, Y.X. Monitoring leaf nitrogen accumulation with hyper-spectral remote sensing in wheat. Sci. Agric. Sin. 2008, 28, 23–32. [Google Scholar] [CrossRef]
- Liang, L.; Yang, M.H.; Zang, Z. Determination of wheat canopy nitrogen content ratio by hyperspectral technology based on wavelet denoising and support vector regression. Trans. Chin. Soc. Agric. Eng. 2010, 26, 248–253. [Google Scholar] [CrossRef]
- Song, X.; Xu, D.; He, L.; Feng, W.; Wang, Y.H.; Wang, Z.J. Using multi-angle hyperspectral data to monitor canopy leaf nitrogen content of wheat. Precis. Agric. 2016, 17, 1–16. [Google Scholar] [CrossRef]
- Wang, Z.; Skidmore, A.K.; Darvishzadeh, R.; Wang, T. Mapping forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery. Agric. For. Meteorol. 2018, 253–254, 247–260. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, W.; Kong, W.; Ye, H.C.; Luo, J.; Chen, P. Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements. Adv. Space Res. 2016, 58, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jákli, B.; Lu, P.; Ren, T.; Ming, J.; Liu, S. Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution. Ind. Crop. Prod. 2018, 116, 1–14. [Google Scholar] [CrossRef]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.A. High resolution derivative spectra in remote sensing. Remote. Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, L. The Estimation of Vegetation Variables Based on High Resolution Spectra. J. Remote Sens. 1997, 1, 111–114. [Google Scholar]
- Liang, L.; Zhang, L.P.; Lin, H.; Li, C.M.; Yang, M.H. Estimating Canopy Leaf Water Content in Wheat Based on Derivative Spectra. Sci. Agric. Sin. 2013, 46, 18–29. [Google Scholar] [CrossRef]
- Ju, C.H.; Tian, Y.C.; Zhu, Y.; Yao, X.; Cao, W.X. Relationship between derivative spectra and photosynthetic organ area in rapeseed (Brassica napus). J. Plant Ecol. (Chinese Version) 2008, 32, 664–672. [Google Scholar]
- Tian, Y.C.; Yang, J.; Yao, X.; Zhu, Y.; Cao, W.X. Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice. Chin. J. Appl. Ecol. 2009, 20, 1685–1690. [Google Scholar]
- Liang, L.; Zhao, S.; Di, P.; Zhang, C. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int. J. Remote Sens. 2016, 37, 2923–2949. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.P.; Zhang, L.P.; Deng, M.X.; Qin, Z.H.; Zhao, S.H.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Forster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Liang, L.; Sun, Q.; Luo, X.; Wang, J.; Zhang, L.; Deng, M.; Di, L.; Liu, Z. Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere 2017, 8, e01919. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote. Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble based systems in decision making. Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, F.H.; Wang, X.Q. Conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for wheat in China. Field Crop. Res. 2004, 87, 35–42. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X.; Zhu, Y. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Yu, F.; Shi, W.M. Analysis of nitrogen use efficiency of main food crops in mainland China in the past 10 years. Acta Pedol. Sin. 2015, 52, 1311–1324. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 15, 33–48. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Fourty, T.F.; Baret, F.; Jacquemoud, S. Leaf Optical Properties with Explicit Description of Its Biochemical Composition: Direct and Inverse Problems. Remote. Sens. Environ. 1996, 56, 104–117. [Google Scholar] [CrossRef]
- Serrano, L.J.; Peñuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote. Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gupta, R.K.; Vijayan, D.; Prasad, T.S. New hyperspectral vegetation characterization parameters. Adv. Space Res. 2001, 28, 201–206. [Google Scholar] [CrossRef]
- Marshak, A.; Knyazikhin, Y.; Davis, A.B.; Wiscombe, W.J.; Pilewskie, P. Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett. 2000, 27, 1695–1698. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Vijayan, D.; Prasad, T.S. Comparative analysis of red-edge hyperspectral indices. Adv. Space Res. 2003, 32, 2217–2222. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, J.D. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Yang, M.; Liu, L.; Liu, T.; Huang, W.; Zhao, C. Research on a Method to Retrieve Biophysical and Biochemical Parameters of Wheat Canopy with Hyperspectral Remote Sensing. Acta Geod. Et Cartogr. Sin. 2002, 31, 316–321. [Google Scholar]
- Xue, L. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2003, 96, 135–142. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Tian, X.J.; Cao, W.X. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Inoue, Y.; Miah, G.; Sakaiya, E.; Nakano, K.; Kawamura, K. NDSI map and IPLS using hyperspectral data for assessment of plant and ecosystem variables: With a case study on remote sensing of grain protein content, chlorophyll content and biomass in rice [Oryza sativa]. J. Remote. Sens. Soc. Jpn. 2009, 40, 317–330. [Google Scholar]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.; Mallick, B. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Lin, H.; Liang, L.; Zhang, L.; Du, P. Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm. Trans. CSAE 2013, 29, 139–146. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, L.; Su, S.; Liu, X.; Qian, X. Estimating wheat leaves chlorophyll content using hyperspectral technology and integrated inversion approach. In Proceedings of the 2014 Third International Conference on Agro-Geoinformatics, Piscataway, NJ, USA, 11–14 August 2014. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Science Press: Beijing, China, 2007; p. 316. ISBN 013405816X. [Google Scholar]
- Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Bocchi, S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crop. Res. 2009, 111, 119–129. [Google Scholar] [CrossRef]
- Ryu, C.; Suguri, M.; Umeda, M. Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing. Biosyst. Eng. 2009, 104, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Yi, Q.X.; Huang, J.F.; Wang, F.M.; Wang, X.Z.; Liu, Z.Y. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environ. Sci. Technol. 2007, 41, 6770–6775. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Abdel-Rahman, E.M.; Ismail, R. Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression. Int. J. Remote Sens. 2014, 35, 693–714. [Google Scholar] [CrossRef]
- Antipov, E.A.; Pokryshevskaya, E.B. Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Syst. Appl. 2012, 39, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.H.; Wang, J.D.; Yang, X.; Zhao, X.; Song, J.L. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
Fertility Index | PH | Organic Matter | Total N | Olsen-P | Available-K |
---|---|---|---|---|---|
Mean (g/kg) | 8.34 * | 16.17 | 0.98 | 15.33 | 102.35 |
Coefficient of variation (%) | 3.58 | 8.05 | 11.36 | 20.94 | 53.13 |
Indices | Formula or Definition | References |
---|---|---|
NDVI705 | (R750 − R705)/(R750 + R705) | [27,28] |
mNDVI705 | (R750 − R705)/(R750 + R705 − 2R445) | [28,29] |
mSR705 | (R750 − R445)/(R705 − R445) | [28,29] |
REP | 700 + 40[(R670 + R780)/2 − R700]/(R740 − R700) | [30] |
VOG1 | R740/R720 | [31] |
VOG2 | (R734 − R747)/(R715 + R726) | [31] |
VOG3 | (R734 − R747)/(R715 + R720) | [31] |
NDNI | [log(1/R1510) − log(1/R1680)]/[log(1/R1510) + log(1/R1680)] | [32,33] |
PRI | (R531 − R570)/(R531 + R570) | [34,35] |
OSAVI | (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16) | [36] |
NVI | (R777 − R747)/R673 | [37] |
NDCI | (R762 − R527)/(R762 + R527) | [38] |
RI1dB | R735/R720 | [39] |
GNDVI | (R750 − R550)/(R750 + R550) | [40] |
VIopt | (1 + 0.45)((R800)2 + 1)/(R670 + 0.45) | [41] |
NDVI(573,440) | (R573 − R440)/(R573 + R440) | [42] |
RVI(810,560) | R810/R560 | [43] |
RVI(950,660) | R950/R660 | [44] |
RVI(810,660) | R810/R660 | [44] |
Index Name | Estimation Models | Calibration Dataset (n = 142) | Validation Dataset (n = 48) | Rank | ||
---|---|---|---|---|---|---|
R2 | RMSE(%) | R2 | RMSE(%) | |||
FD-SRNI(716,526) | y = 0.8303x + 0.2248 | 0.861 | 0.332 | 0.859 | 0.336 | 1 |
FD-NDNI(715,516) | y = 8.408x − 1.98 | 0.860 | 0.333 | 0.859 | 0.337 | 2 |
mNDVI 705 | y = 5.366x + 0.560 | 0.771 | 0.424 | 0.757 | 0.434 | 3 |
mSR705 | y = 1.800 ln (x) + 1.186 | 0.754 | 0.439 | 0.741 | 0.448 | 4 |
NDVI705 | y = 5.641x + 0.866 | 0.750 | 0.443 | 0.740 | 0.449 | 5 |
GREEN-NDVI | y = 8.767x − 1.867 | 0.748 | 0.445 | 0.723 | 0.459 | 6 |
NDCI | y = 9.329x − 2.884 | 0.738 | 0.450 | 0.731 | 0.456 | 7 |
VIopt | y = −6.344x2 + 44.730x − 74.270 | 0.737 | 0.456 | 0.731 | 0.457 | 8 |
NDVI(573,440) | y = − 13.917x + 8.828 | 0.733 | 0.452 | 0.727 | 0,460 | 9 |
REP | y = 0.298x − 211.975 | 0.732 | 0.455 | 0.725 | 0.461 | 10 |
RI1dB | y = 3.862x − 2.184 | 0.725 | 0.461 | 0.716 | 0.468 | 11 |
RVI(810,560) | y = 2.374ln(x) − 0. 208 | 0.723 | 0.466 | 0.715 | 0.470 | 12 |
OSAVI | y = 2.939 ln (x) + 5.478 | 0.702 | 0.480 | 0.694 | 0.487 | 13 |
VOG3 | y = −39.151x2 − 23.81x + 0.790 | 0.687 | 0.496 | 0.680 | 0.502 | 14 |
NDNI | y = −322.09x2 + 104.38x − 3.897 | 0.685 | 0.494 | 0.675 | 0.501 | 15 |
VOG2 | y = −51.585x2 − 27.193x + 0.628 | 0.684 | 0.499 | 0.677 | 0.516 | 16 |
RVI(950,660) | y = 1.385ln(x) + 0.933 | 0.680 | 0.501 | 0.657 | 0.520 | 17 |
RVI(810,660) | y = 1.305ln(x) + 1.114 | 0.665 | 0.513 | 0.652 | 0.522 | 18 |
PRI | y = 22.673x + 4.875 | 0.654 | 0.517 | 0.643 | 0.526 | 19 |
VOG1 | y = 4.677ln(x) + 1.314 | 0.641 | 0.517 | 0.633 | 0524 | 20 |
NVI | y = 0.914x + 2.721 | 0.504 | 0.620 | 0.488 | 0.629 | 21 |
Model Algorithm | CHRIS Spectral Indices | Independent Validation Dataset (n = 48) | |
---|---|---|---|
R2 | RMSE (%) | ||
Curve-fitting model | NDVI705 | 0.735 | 0.455 |
mNDVI705 | 0.749 | 0.446 | |
mSR705 | 0.738 | 0.453 | |
FD-NDNI | 0.830 | 0.359 | |
FD-SRNI | 0.829 | 0.362 | |
LS-SVR model | NDVI705 | 0.739 | 0.449 |
m NDVI705 | 0.756 | 0.432 | |
mSR705 | 0.741 | 0.450 | |
FD-NDNI | 0.835 | 0.354 | |
FD-SRNI | 0.833 | 0.357 | |
RFR model | NDVI705 | 0.811 | 0.385 |
m NDVI705 | 0.818 | 0.378 | |
mSR705 | 0.816 | 0.374 | |
FD-NDNI | 0.874 | 0.317 | |
FD-SRNI | 0.872 | 0.320 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Di, L.; Huang, T.; Wang, J.; Lin, L.; Wang, L.; Yang, M. Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm. Remote Sens. 2018, 10, 1940. https://doi.org/10.3390/rs10121940
Liang L, Di L, Huang T, Wang J, Lin L, Wang L, Yang M. Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm. Remote Sensing. 2018; 10(12):1940. https://doi.org/10.3390/rs10121940
Chicago/Turabian StyleLiang, Liang, Liping Di, Ting Huang, Jiahui Wang, Li Lin, Lijuan Wang, and Minhua Yang. 2018. "Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm" Remote Sensing 10, no. 12: 1940. https://doi.org/10.3390/rs10121940
APA StyleLiang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., & Yang, M. (2018). Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm. Remote Sensing, 10(12), 1940. https://doi.org/10.3390/rs10121940