Time Tracking of Different Cropping Patterns Using Landsat Images under Different Agricultural Systems during 1990–2050 in Cold China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
2.2.1. Landsat Image Collection and Preprocessing
2.2.2. Tracking Cropping Information
2.2.3. Accuracy Assessment
2.2.4. Trajectory Transformations
2.2.5. Cropping Pattern Prediction
3. Results
3.1. Validation Accuracy of the New Cropping Pattern Maps
3.2. Comparison of the Cropping Patterns between NLCD-Based and New-Based Datasets
3.3. Different Cropping Patterns in Different Agricultural Systems
3.4. Trajectory Transformations of Cropping Pattern at the Pixel Level in Different Agricultural Systems
3.5. Cropping Patterns for the Period of 2020–2050
4. Discussion
4.1. First Region for Continuous and Large-Scale Land Use Transformations from Upland Crop to Paddy Field in China
4.2. Reasons for Different Paddy Patterns under Different Agricultural Systems in China
4.3. Driving of Physical Conditions and Human Factors on New Cropping Pattern Changes in Cold and High Latitudes of China
4.4. Effect of Cropping Pattern Changes on the Environment in Cold Region
4.5. Uncertainty of Crop Information Extraction and Future Prediction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Meroni, M.; Schucknecht, A.; Fasbender, D.; Rembold, F.; Fava, F.; Mauclaire, M.; Goffner, D.; Di Lucchio, L.M.; Leonardi, U. Remote sensing monitoring of land restoration interventions in semi-arid environments with a before–after control-impact statistical design. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.; Lakner, Z.; Harangi-Rakos, M.; Fari, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Dheeravath, V.; Biradar, C.M.; Gangalakunta, O.R.P.; Noojipady, P.; Gurappa, C.; Velpuri, M.; Gumma, M.; Li, Y. Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sens. 2009, 1, 50–67. [Google Scholar] [CrossRef]
- Tian, H.; Ren, W.; Tao, B.; Sun, G.; Chappelka, A.; Wang, X.; Pan, S.; Yang, J.; Liu, J.; Felzer, B.S. Climate extremes and ozone pollution: A growing threat to China’s food security. Ecosyst. Health Sustain. 2016, 2, e01203. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Xiubin, L. A review of the international researches on land use/land cover change. Acta Geogr. Sin. 1996, 6, 553–558. [Google Scholar]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Li, H.; Luo, H.; Zhao, Y.; Zhang, K. Changes of annual accumulated temperature over Southern China during 1960–2011. J. Geogr. Sci. 2015, 25, 1155–1172. [Google Scholar] [CrossRef]
- Wang, L.; Song, C.; Song, Y.; Guo, Y.; Wang, X.; Sun, X. Effects of reclamation of natural wetlands to a rice paddy on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China. Ecol. Eng. 2010, 36, 1417–1423. [Google Scholar] [CrossRef]
- Shi, W.; Tao, F.; Liu, J.; Xu, X.; Kuang, W.; Dong, J.; Shi, X. Has climate change driven spatio-temporal changes of cropland in northern China since the 1970s? Clim. Chang. 2014, 124, 163–177. [Google Scholar] [CrossRef]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Kebede, Y.; Baudron, F.; Bianchi, F.; Tittonell, P. Unpacking the push-pull system: Assessing the contribution of companion crops along a gradient of landscape complexity. Agric. Ecosyst. Environ. 2018, 268, 115–123. [Google Scholar] [CrossRef]
- Kim, D.-G. Nitrous Oxide and Methane Fluxes in Riparian Buffers and Adjacent Crop Fields; Iowa State University: Ames, IA, USA, 2008. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, B.; Kurban, A. Spatial pattern analysis of land cover change trajectories in Tarim Basin, northwest China. Int. J. Remote Sens. 2008, 29, 5495–5509. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, S.; Kuang, W.; Du, G.; Chen, J.; Liu, X.; Yu, L.; Yang, C. Comparison of cultivated landscape changes under different management modes: A case study in Sanjiang Plain. Sustainability 2016, 8, 1071. [Google Scholar] [CrossRef]
- Lin, G.; Ho, S.P. The state, land system, and land development processes in contemporary China. Ann. Assoc. Am. Geogr. 2005, 95, 411–436. [Google Scholar] [CrossRef]
- Ye, Y.; Fang, X. Spatial pattern of land cover changes across Northeast China over the past 300 years. J. Hist. Geogr. 2011, 37, 408–417. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Zhang, S.; Li, X.; Liu, D.; Song, K.; Li, J.; Li, F.; Duan, H. Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environ. Monit. Assess. 2006, 112, 69–91. [Google Scholar] [CrossRef]
- Ecsedy, C.J.; Murphy, C.G. Global climate warming. Water Environ. Res. 1992, 64, 647–653. [Google Scholar]
- Liu, H.; Zhang, S.; Li, Z.; Lu, X.; Yang, Q. Impacts on wetlands of large-scale land-use changes by agricultural development: The small Sanjiang Plain, China. Ambio A J. Hum. Environ. 2004, 33, 306–310. [Google Scholar] [CrossRef]
- Song, K.; Liu, D.; Wang, Z.; Zhang, B.; Jin, C.; Li, F.; Liu, H. Land use change in Sanjiang Plain and its driving forces analysis since 1954. Acta Geogr. Sin. 2008, 63, 93. [Google Scholar]
- Tao, F.; Zhang, Z.; Zhang, S.; Zhu, Z.; Shi, W. Response of crop yields to climate trends since 1980 in China. Clim. Res. 2012, 54, 233–247. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.; Roy, P.; Dwevedi, R. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Olmedo, M.T.C.; Paegelow, M.; Mas, J.-F.; Escobar, F. Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [Google Scholar] [CrossRef]
- Nadoushan, M.; Soffianian, A.; Alebrahim, A. Modeling land use/cover changes by the combination of Markov chain and cellular automata Markov (CA-Markov) models. J. Earth Environ. Health Sci. 2015, 1, 16. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Yang, H.; Li, X. Cultivated land and food supply in China. Land Use Policy 2000, 17, 73–88. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the US: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Long, H. The process and driving forces of rural hollowing in China under rapid urbanization. J. Geogr. Sci. 2010, 20, 876–888. [Google Scholar] [CrossRef]
- Elert, E. Rice by the numbers: A good grain. Nature 2014, 514, S50. [Google Scholar] [CrossRef]
- Wang, Z.; Song, K.; Ma, W.; Ren, C.; Zhang, B.; Liu, D.; Chen, J.M.; Song, C. Loss and fragmentation of marshes in the Sanjiang Plain, Northeast China, 1954–2005. Wetlands 2011, 31, 945. [Google Scholar] [CrossRef]
- Huang, J.; Rozelle, S.; Wang, H. Fostering or stripping rural China: Modernizing agriculture and rural to urban capital flows. Dev. Econ. 2006, 44, 1–26. [Google Scholar] [CrossRef]
- Liu, X.; Dong, G.; Wang, X.; Xue, Z.; Jiang, M.; Lu, X.; Zhang, Y. Characterizing the spatial pattern of marshlands in the Sanjiang Plain, Northeast China. Ecol. Eng. 2013, 53, 335–342. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Lu, C.; Xu, X.; Ren, W.; Zhang, B.; Banger, K.; Tao, B.; Pan, S.; Liu, M. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain. 2015, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Tian, H.; Chen, G.; Liu, M.; Ren, W.; Lu, C.; Zhang, C. Multifactor controls on terrestrial N2O flux over North America from 1979 through 2010. Biogeosciences 2012, 9, 1351. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Su, S.; Li, C. Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences 2011, 8, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A. Multi-factor controls on terrestrial carbon dynamics in urbanized areas. Biogeosciences 2014, 11, 7107. [Google Scholar] [CrossRef]
- Verburg, P.H. Simulating feedbacks in land use and land cover change models. Landsc. Ecol. 2006, 21, 1171–1183. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, W.; Gartner, G.; Meng, L.; Peterson, M. Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Periods | 1989–1991 | 1994–1996 | 1999–2001 | 2004–2006 | 2009–2011 | 2014–2016 | Total |
---|---|---|---|---|---|---|---|
Total Landsat images | 794 | 755 | 747 | 690 | 558 | 813 | 4357 |
Good-observations images | 135 | 154 | 145 | 113 | 100 | 124 | 771 |
Epochs | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | Total |
Extracted images | 25 | 33 | 54 | 21 | 32 | 36 | 201 |
Auxiliary extracted images | 5 | 6 | 3 | 13 | 5 | 6 | 38 |
Verified images | 10 | 11 | -- | -- | -- | -- | 21 |
Auxiliary verified images | 3 | 3 | -- | -- | -- | -- | 6 |
1989–1991 | 1994–1996 | 1999–2001 | 2004–2006 | 2009–2011 | 2014–2016 | Total | |
---|---|---|---|---|---|---|---|
113/027 | 12 | 11 | 14 | 13 | 9 | 10 | 69 |
114/026 | 13 | 16 | 14 | 10 | 5 | 10 | 68 |
114/027 | 14 | 14 | 10 | 10 | 8 | 11 | 67 |
114/028 | 15 | 13 | 13 | 7 | 6 | 10 | 64 |
114/029 | 13 | 14 | 11 | 9 | 6 | 12 | 65 |
115/026 | 7 | 12 | 14 | 8 | 9 | 13 | 63 |
115/027 | 9 | 12 | 12 | 7 | 12 | 8 | 60 |
115/028 | 11 | 9 | 11 | 7 | 8 | 7 | 53 |
115/029 | 7 | 11 | 12 | 8 | 9 | 9 | 56 |
116/027 | 10 | 16 | 11 | 12 | 8 | 11 | 68 |
116/028 | 10 | 14 | 13 | 10 | 11 | 13 | 71 |
116/029 | 14 | 12 | 10 | 12 | 9 | 10 | 67 |
Total | 135 | 154 | 145 | 113 | 100 | 124 | 771 |
Types | Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 | Types | Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
c p | p0→p1 | p1→p2 | p2→p3 | p3→p4 | p4→p5 | c u | u0→u1 | u1→u2 | u2→u3 | u3→u4 | u4→u5 |
r p | nc0→p1 | nc1→p2 | nc2→p3 | nc3→p4 | nc4→p5 | r u | nc0→u1 | nc1→u2 | nc2→u3 | nc3→u4 | nc4→u5 |
p→nc | p0→ nc1 | p1→nc2 | p2→nc3 | p3→nc4 | p4→nc5 | u→nc | u0→nc1 | u1→nc2 | u2→nc3 | u3→nc4 | u4→nc5 |
p→u | p0→u1 | p1→u2 | p2→u3 | p3→u4 | p4→u5 | u→p | u0→p1 | u1→p2 | u2→p3 | u3→p4 | u4→p5 |
Ground Truth (GT) Samples (Pixels) | Total Classified Pixels | User’s Accuracy | ||||
---|---|---|---|---|---|---|
Year | Land-Use Type | Paddy Field | Upland Crop | Non-Cropland | ||
1990 | Paddy field | 89 | 4 | 7 | 100 | 89.00% |
Upland crop | 3 | 151 | 10 | 164 | 92.07% | |
Non-cropland | 5 | 13 | 118 | 136 | 86.76% | |
Total GT pixels | 97 | 168 | 135 | 400 | OA = 89.50% | |
Producer’s Accuracy | 91.75% | 89.88% | 87.41% | Kappa = 0.87 | ||
1995 | Paddy field | 126 | 4 | 7 | 137 | 91.97% |
Upland crop | 1 | 112 | 9 | 122 | 91.80% | |
Non-cropland | 9 | 5 | 127 | 141 | 90.07% | |
Total GT pixels | 136 | 121 | 143 | 400 | OA = 91.25% | |
Producer’s Accuracy | 92.65% | 92.56% | 88.81% | Kappa = 0.88 | ||
2000 | Paddy field | 54 | 2 | 4 | 60 | 90.00% |
Upland crop | 1 | 81 | 4 | 86 | 94.19% | |
Non-cropland | 3 | 6 | 62 | 72 | 86.11% | |
Total GT pixels | 58 | 89 | 69 | 217 | OA = 90.78% | |
Producer’s Accuracy | 93.10% | 91.01% | 89.86% | Kappa = 0.86 | ||
2005 | Paddy field | 78 | 2 | 4 | 84 | 92.86% |
Upland crop | 1 | 69 | 5 | 75 | 92.00% | |
Non-cropland | 6 | 4 | 97 | 107 | 90.65% | |
Total GT pixels | 85 | 75 | 107 | 266 | OA = 91.78% | |
Producer’s Accuracy | 91.76% | 92.00% | 91.59% | Kappa = 0.88 | ||
2010 | Paddy field | 134 | 5 | 5 | 144 | 93.06% |
Upland crop | 1 | 93 | 6 | 100 | 93.00% | |
Non-cropland | 7 | 3 | 93 | 103 | 90.29% | |
Total GT pixels | 142 | 101 | 104 | 347 | OA = 92.22% | |
Producer’s Accuracy | 94.37% | 92.08% | 89.42% | Kappa = 0.88 | ||
2015 | Paddy field | 153 | 3 | 5 | 161 | 95.03% |
Upland crop | 3 | 106 | 4 | 113 | 93.81% | |
Non-cropland | 6 | 2 | 100 | 108 | 92.59% | |
Total GT pixels | 162 | 111 | 109 | 382 | OA = 93.98% | |
Producer’s Accuracy | 94.44% | 95.50% | 91.74% | Kappa = 0.89 |
1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | ||
---|---|---|---|---|---|---|
Cropland | c p | 2785 | 4643 | 9522 | 12,544 | 18852 |
p→u | 55 | 34 | 4 | 33 | 13 | |
c u | 35,748 | 35,045 | 34,309 | 30,563 | 25,842 | |
u→p | 1590 | 4421 | 2612 | 4853 | 5638 | |
Cropland and Noncropland | nc→p | 314 | 474 | 453 | 1468 | 2045 |
nc→u | 4238 | 2493 | 1371 | 932 | 114 | |
p→nc | 9 | 13 | 14 | 10 | 5 | |
u→nc | 977 | 575 | 651 | 266 | 48 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Zhang, C.; Kuang, W.; De Maeyer, P.; Kurban, A.; Hamdi, R.; Du, G. Time Tracking of Different Cropping Patterns Using Landsat Images under Different Agricultural Systems during 1990–2050 in Cold China. Remote Sens. 2018, 10, 2011. https://doi.org/10.3390/rs10122011
Pan T, Zhang C, Kuang W, De Maeyer P, Kurban A, Hamdi R, Du G. Time Tracking of Different Cropping Patterns Using Landsat Images under Different Agricultural Systems during 1990–2050 in Cold China. Remote Sensing. 2018; 10(12):2011. https://doi.org/10.3390/rs10122011
Chicago/Turabian StylePan, Tao, Chi Zhang, Wenhui Kuang, Philippe De Maeyer, Alishir Kurban, Rafiq Hamdi, and Guoming Du. 2018. "Time Tracking of Different Cropping Patterns Using Landsat Images under Different Agricultural Systems during 1990–2050 in Cold China" Remote Sensing 10, no. 12: 2011. https://doi.org/10.3390/rs10122011
APA StylePan, T., Zhang, C., Kuang, W., De Maeyer, P., Kurban, A., Hamdi, R., & Du, G. (2018). Time Tracking of Different Cropping Patterns Using Landsat Images under Different Agricultural Systems during 1990–2050 in Cold China. Remote Sensing, 10(12), 2011. https://doi.org/10.3390/rs10122011