Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study
Abstract
:1. Introduction
2. Dataset and Area of Interest
3. Methodology
3.1. MT-InSAR
3.2. Bulding Damage Assessment Relative Stiffness Method
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Milillo, P.; Riel, B.; Minchew, B.; Yun, S.H.; Simons, M.; Lundgren, P. On the synergistic use of SAR constellations’ data exploitation for earth science and natural hazard response. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1095–1100. [Google Scholar] [CrossRef]
- Yun, S.-H.; Hudnut, K.; Owen, S.; Webb, F.; Simons, M.; Sacco, P.; Gurrola, E.; Manipon, G.; Liang, C.; Eric Fielding, E.; et al. Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites. Seismol. Res. Lett. 2015, 86, 1549–1556. [Google Scholar] [CrossRef]
- Di Martire, D.; Paci, M.; Confuorto, P.; Costabile, S.; Guastaferro, F.; Verta, A.; Calcaterra, D. A nation-wide system for landslide mapping and risk management in Italy: The second Not-ordinary Plan of Environmental Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 143–157. [Google Scholar] [CrossRef]
- Cerchiello, V.; Tessari, G.; Velterop, E.; Riccard, P.; Defilippi, M.; Pasquali, P. Risk of building damage by modeling interferometric time series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7334–7337. [Google Scholar]
- Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H. Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data. J. Hydrol. 2016, 540, 835–849. [Google Scholar] [CrossRef]
- Fornaro, G.; Reale, D.; Verde, S. Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 677–681. [Google Scholar] [CrossRef]
- Lazecky, M.; Perissin, D.; Bakon, M.; de Sousa, J.M.; Hlavacova, I.; Real, N. Potential of satellite InSAR techniques for monitoring of bridge deformations. In Proceedings of the Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar]
- Luo, Q.; Zhou, G.; Perissin, D. Monitoring of Subsidence along Jingjin Inter-City Railway with High-Resolution TerraSAR-X MT-InSAR Analysis. Remote Sens. 2017, 9, 717. [Google Scholar] [CrossRef]
- Chang, L.; Dollevoet, R.P.; Hanssen, R.F. Nationwide Railway Monitoring Using Satellite SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 596–604. [Google Scholar] [CrossRef]
- Strozzi, T.; Delaloye, R.; Poffet, D.; Hansmann, J.; Loew, S. Surface subsidence and uplift above a headrace tunnel in metamorphic basement rocks of the Swiss Alps as detected by satellite SAR interferometry. Remote Sens. Environ. 2011, 115, 1353–1360. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Lin, H. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Robles, J.G.; Black, M.; Gomar, B.S. Correlation Study between In-Situ Auscultation and Satellite Interferometry for the Assessment of Nonlinear Ground Motion on Crosrail London; Crossrail Learning Legacy Report; ICE Publishing: London, UK, 2016. [Google Scholar]
- Martí, J.G.; Nevard, S.; Sanchez, J. The Use of InSAR (Interferometric Synthetic Aperture Radar) to Complement Control of Construction and Protect Third Party Assets; Crossrail Learning Legacy Report; Crossrail Ltd.: London, UK, 2017. [Google Scholar]
- Milillo, P.; Perissin, D.; Salzer, J.T.; Lundgren, P.; Lacava, G.; Milillo, G.; Serio, C. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 221–229. [Google Scholar] [CrossRef]
- Milillo, P.; Bürgmann, R.; Lundgren, P.; Salzer, J.; Perissin, D.; Fielding, E.; Biondi, F.; Milillo, G. Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam, Iraq. Sci. Rep. 2016, 6, 37408. [Google Scholar] [CrossRef] [PubMed]
- Di Martire, D.; Iglesias, R.; Monells, D.; Centolanza, G.; Sica, S.; Ramondini, M.; Pagano, L.; Mallorquí, J.J.; Calcaterra, D. Comparison between differential SAR interferometry and ground measurements data in the displacement monitoring of the earth-dam of Conza della Campania (Italy). Remote Sens. Environ. 2014, 148, 58–69. [Google Scholar] [CrossRef]
- Emadali, L.; Motagh, M.; Haghighi, M.H. Characterizing post-construction settlement of the Masjed-Soleyman embankment dam, Southwest Iran, using TerraSAR-X SpotLight radar imagery. Eng. Struct. 2017, 143, 261–273. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Satellite-based preventive diagnosis: Use of Persistent Scatterer Interferometry on cultural heritage sites in Italy. In Proceedings of the Remote Sensing and Photogrammetry Society Conference, London, UK, 12–14 September 2012. [Google Scholar]
- Arangio, S.; Calò, F.; Di Mauro, M.; Bonano, M.; Marsella, M.; Manunta, M. An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct. Infrastruct. Eng. 2014, 10, 1469–1483. [Google Scholar] [CrossRef]
- Bonano, M.; Calò, F.; Manunta, M.; Marsella, M.; Scifoni, S.; Sonnessa, A.; Tagliafierro, V. Ground Settlement Assessment in Urban Areas through SBAS-DInSAR Measurements: The Case Study of Roma (Italy). In Engineering Geology for Society and Territory-Volume 5; Springer: Cham, Switzerland, 2015; pp. 985–988. [Google Scholar]
- Mair, R.J.; Taylor, R.N.; Burland, J.B. Prediction of ground movements and assessment of risk of building damage due to bored tunneling. In Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the International Symposium; Mair, R.J., Taylor, R.N., Eds.; CRC Press: Balkema, Rotterdam, 1996; pp. 713–718. [Google Scholar]
- Burland, J.B.; Mair, R.J.; Standing, R.N. Ground performance and building response due to tunneling. In Conference on Advances in Geotechnical Engineering; Jardine, R.J., Potts, D.M., Higgins, K.G., Eds.; Institution of Civil Engineers: London, UK, 2004; Volume 1, pp. 291–342. [Google Scholar]
- Viggiani, G.; Standing, J. Building Response to Tunnelling: Case Studies from Construction of the Jubilee Line Extension; Ciria and Thomas Telford: London, UK, 2001; Volume 2, pp. 401–432. [Google Scholar]
- Farrell, R.P. Tunnelling in Sands and the Response of Buildings. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2010. [Google Scholar]
- Giardina, G.; DeJong, M.J.; Mair, R.J. Interaction between surface structures and tunnelling in sand: Centrifuge and computational modelling. Tunn. Undergr. Space Technol. 2015, 50, 465–478. [Google Scholar] [CrossRef]
- Ritter, S.; DeJong, M.J.; Giardina, G.; Mair, R.J. Influence of building characteristics on tunnelling-induced ground movements. Geotechnique 2017, 67, 926–937. [Google Scholar] [CrossRef]
- Potts, D.M.; Addenbrooke, T.I. A structure’s influence on tunnelling-induced ground movements. Proc. Inst. Civ. Eng. Geotech. Eng. 1997, 125, 109–125. [Google Scholar] [CrossRef]
- Son, M.; Cording, E.J. Estimation of building damage due to excavation-induced ground movements. J. Geotech. Geoenviron. Eng. 2005, 131, 162–177. [Google Scholar] [CrossRef]
- Franzius, J.N.; Potts, D.M.; Burland, J.B. The response of surface structures to tunnel construction. Proc. Inst. Civ. Eng. Geotech. Eng. 2006, 159, 3–17. [Google Scholar] [CrossRef]
- Mair, R. Tunnelling and deep excavations: Ground movements and their effects. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering; IOS Press: Athens, Greece, 2013. [Google Scholar]
- Ritter, S. Tunnel-Soil-Structure Interaction. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2017. [Google Scholar]
- Giardina, G.; DeJong, M.J.; Chalmers, B.; Ormond, B.; Mair, R.J. A comparison of current analytical methods for predicting soil-structure interaction due to tunneling. Tunn. Undergr. Space Technol. under review.
- King, M.; Thomas, I.; Stenning, A. Crossrail project: Machine-driven tunnels on the Elizabeth line, London. Proc. Inst. Civ. Eng. Civ. Eng. 2017, 170, 31–38. [Google Scholar] [CrossRef]
- Siebenmann, R.; Yu, H.-T.; Bachus, R. UCIMS: Advances in geotechnical construction and performance monitoring. J. Rock Mech. Geotech. Eng. 2015, 7, 207–212. [Google Scholar] [CrossRef]
- Torp-Petersen, G.E.; Black, M.G. Geotechnical investigation and assessment of potential building damage arising from ground movements: CrossRail. Proc. Inst. Civ. Eng. Transp. 2001, 147, 107–119. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Wang, T. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Peck, R. Deep excavations and tunneling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1969; Sociedad Mexicana de Mecanica de Suelos: Mexico City, Mexico, 1969; pp. 225–290. [Google Scholar]
- O’Reilly, M.P.; New, B.M. Settlement above tunnels in the United Kingdom—Their magnitude and prediction. In Proceedings of the 3rd International Symposium; Institution of Mining and Metallurgy: London, UK, 1982; pp. 173–181. [Google Scholar]
- Mair, R.J.; Taylor, R.N.; Bracegirdle, A. Subsurface settlement profiles above tunnels in clay. Geotechnique 1993, 43, 315–320. [Google Scholar] [CrossRef]
- Mair, R.J. General report on settlement effects of bored tunnels. In International Conference of Geotechnical Aspects on Underground Construction in Soft Ground; CRC Press: London, UK, 1996; pp. 43–53. [Google Scholar]
- Boscardin, M.D.; Cording, E.J. Building response to excavation-induced settlement. J. Geotech. Eng. 1989, 115, 1–21. [Google Scholar] [CrossRef]
- Timoshenko, S.P. Strength of Materials: Elementary Theory and Problems; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1957. [Google Scholar]
- Vorster, T.; Klar, A.; Soga, K.; Mair, R. Estimating the effects of tunneling on existing pipelines. J. Geotech. Geoenviron. Eng. 2005, 131, 1399–1410. [Google Scholar] [CrossRef]
- Marshall, A.; Farrell, R.; Klar, A.; Mair, R. Tunnels in sands: The effect of size, depth and volume loss on greenfield displacements. Geotechnique 2012, 62, 385–399. [Google Scholar] [CrossRef]
Category of Damage | Damage Class | Approximate Crack Width | Limiting Tensile Strain Levels (%) |
---|---|---|---|
Aesthetic damage | Negligible | Up to 0.1 mm | 0–0.05 |
Very slight | Up to 1 mm | 0.05–0.075 | |
Slight | Up to 5 mm | 0.075–0.15 | |
Functional damage, affecting serviceability | Moderate | 5 to 15 mm or a number of cracks > 3 mm | 0.15–0.3 |
Severe | 15 to 25 mm, but also depends on number of cracks | >0.3 | |
Structural damage, affecting stability | Very severe | Usually > 25 mm, but depends on number of cracks | >0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milillo, P.; Giardina, G.; DeJong, M.J.; Perissin, D.; Milillo, G. Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study. Remote Sens. 2018, 10, 287. https://doi.org/10.3390/rs10020287
Milillo P, Giardina G, DeJong MJ, Perissin D, Milillo G. Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study. Remote Sensing. 2018; 10(2):287. https://doi.org/10.3390/rs10020287
Chicago/Turabian StyleMilillo, Pietro, Giorgia Giardina, Matthew J. DeJong, Daniele Perissin, and Giovanni Milillo. 2018. "Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study" Remote Sensing 10, no. 2: 287. https://doi.org/10.3390/rs10020287
APA StyleMilillo, P., Giardina, G., DeJong, M. J., Perissin, D., & Milillo, G. (2018). Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study. Remote Sensing, 10(2), 287. https://doi.org/10.3390/rs10020287