A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Trends in Extreme Rainfall Indices
2.3. Flood Extent Mapping Using Optical Satellite Data
2.4. SAR Data Based Flood Mapping
3. Results
3.1. Rainfall Trends in Selected Sri Lankan River Basins
3.2. Rapid Response Mapping Using ALOS PALSAR
3.3. Flood Hazard Mapping at Country Level
4. Discussion
5. Conclusions
- Extreme indices such as number of heavy precipitation days greater than 10 witnessed significant increasing trend in the catchment in eastern, southern and southwestern Sri Lanka.
- Flood hotspots were identified using both ALOS PALSAR and MODIS aggregated flood maps. A cross comparison of the results of multi-scale flood mapping based on MODIS and ALOS PALSAR applied for Sri Lanka indicated average difference in mapped area to be less than 22%.
- Inundation extent from 2006 to 2015 (excluding the 2016 major flood) in eastern, western and southern provinces rank as the top three flood-risk regions with total inundation areas of 1100 km2, 369 km2 and 359 km2, respectively.
- The flood recurrent map based on the aggregated annual MODIS data indicates that the eastern and western provinces of Sri Lanka were the most affected by flood events in the past 16 years. This seemed to be evidence that the increasing trend in the extreme rainfall indices are related to flood frequency derived from satellite imagery.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MDM. Sri Lanka Comprehensive Disaster Management Programme (SLCDMP) 2014–2018. Ministry of Disaster Management. 2014. Available online: http://www.disastermin.gov.lk/web/images/pdf/slcdmp%20english.pdf (accessed on 10 October 2017).
- EM-DAT: The CRED/OFDA International Disaster Database. Available online: http://www.emdat.be/ (accessed on 15 January 2016).
- DMC, UNDP & UNDPRC Sri Lanka National Report on Disaster Risk, Poverty and Human Development Relationship. 2009. Available online: http://www.desinventar.lk/ (accessed on 12 November 2017).
- OCHA (The United Nations Office for the Coordination of Humanitarian Affairs). Sri Lanka: Floods and landslides Situation Report No. 1 (as of 22 May 2016). United Nations Office for the Coordination of Humanitarian Affairs Regional Office for Asia and the Pacific. 2016. Available online: http://reliefweb.int/sites/reliefweb.int/files/resources/OCHA%20ROAP%20Sitrep%201%20Flood%20and%20landslides.pdf (accessed on 5 August 2017).
- Aon Benfield. Global Catastrophe Recap May 2016. Aon Benfield Analytics: Impact Forecasting. 2016. Available online: http://thoughtleadership.aonbenfield.com/Documents/20160608-ab-analytics-if-may-global-recap.pdf (accessed on 8 July 2017).
- IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Available online: http://www.ipcc.ch/ipccreports/tar/wg2/index.php?idp=0 (accessed on 16 August 2017).
- Ahmed, M.; Suphachalasai, S. Assessing the Costs of Climate Change and Adaptation in South Asia. Asian Development Bank. 2014. Available online: https://www.adb.org/sites/default/files/publication/42811/assessing-costs-climate-change-and-adaptation-south-asia.pdf (accessed on 30 May 2016).
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Brivio, P.A.; Colombo, R.; Maggi, M.; Tomasoni, R. Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote Sens. 2002, 23, 429–441. [Google Scholar] [CrossRef]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- Qi, S.; Brown, D.G.; Tian, Q.; Jiang, L.; Zhao, T.; Bergen, K.M. Inundation Extent and Flood Frequency Mapping Using LANDSAT Imagery and Digital Elevation Models. GISci. Remote Sens. 2009, 46, 101–127. [Google Scholar] [CrossRef]
- Ali, A.; Quadir, D.A.; Huh, O.K. Study of river flood hydrology in Bangladesh with AVHRR data. Int. J. Remote Sens. 1989, 10, 1873–1891. [Google Scholar] [CrossRef]
- Barton, I.J.; Bathols, J.M. Monitoring floods with AVHRR. Remote Sens. Environ. 1989, 30, 89–94. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water Body Detection and Delineation with Landsat TM Data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1467. [Google Scholar]
- Jain, S.K.; Saraf, A.K.; Goswami, A.; Ahmad, T. Flood inundation mapping using NOAA AVHRR data. Water Resour. Manag. 2006, 20, 949–959. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Vancutsem, C.; Bastin, L.; Clerici, M.; Vanbogaert, E.; Bartholomé, E.; Defourny, P. A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens. Environ. 2014, 140, 704–716. [Google Scholar] [CrossRef]
- Hallberg, G.R.; Hoyer, B.E.; Rango, A. Application of ERTS-1 imagery to flood inundation mapping. In Symposium on Significant Results Obtained from Earth Resources Satellite; NASA Special Publication; NASA: Washington, DC, USA, 1973; Volume 1, pp. 745–753. [Google Scholar]
- Rango, A.; Salomonson, V.V. Regional flood mapping from space. Water Resour. Res. 1974, 10, 473–484. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of Flood-Prone Areas Using Remote Sensing Techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; De Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Westra, T.; De Wulf, R.R. Modelling yearly flooding extent of the Waza-Logone floodplain in northern Cameroon based on MODIS and rainfall data. Int. J. Remote Sens. 2009, 30, 5527–5548. [Google Scholar] [CrossRef]
- Amarnath, G. An algorithm for rapid flood inundation mapping from optical data using a reflectance differencing technique. J. Flood Risk Manag. 2014, 7, 239–250. [Google Scholar] [CrossRef]
- Amarnath, G.; Rajah, A. An evaluation of flood inundation mapping from MODIS and ALOS satellites for Pakistan. Geomat. Nat. Hazards Risk 2016, 7, 1526–1537. [Google Scholar] [CrossRef]
- Bhatt, C.M.; Rao, G.S. Ganga floods of 2010 in Uttar Pradesh, north India: A perspective analysis using satellite remote sensing data. Geomat. Nat. Hazards Risk 2016, 7, 747–763. [Google Scholar] [CrossRef]
- Satyabala, S.P. Spatiotemporal variations in surface velocity of the Gangotri glacier, Garhwal Himalaya, India: Study using synthetic aperture radar data. Remote Sens. Environ. 2016, 181, 151–161. [Google Scholar] [CrossRef]
- Kiran Kumar, A.S. Tools from the Indian space programme for observing and forecasting extreme weather events—Retrospect and prospect. Mausam 2016, 67, 77–92. [Google Scholar]
- Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [Google Scholar] [CrossRef]
- O’Grady, D.; Leblanc, M.; Gillieson, D. Use of ENVISAT ASAR Global Monitoring Mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 3475–3494. [Google Scholar] [CrossRef]
- Dewan, A.M.; Islam, M.M.; Kumamoto, T.; Nishigaki, M. Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques. Water Resour. Manag. 2007, 21, 1601–1612. [Google Scholar] [CrossRef]
- Kudahetty, C. Flood Mapping Using Synthetic Aperture Radar in the Kelani Ganga and the Bolgoda Basins, Sri Lanka; University of Twente: Enschede, The Netherlands, 2012. [Google Scholar]
- Khan, S.; Hong, Y.; Gourley, J.; Khattak, M.; De Groeve, T. Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan. Remote Sens. 2014, 6, 2393–2407. [Google Scholar] [CrossRef] [Green Version]
- Besse Rimba, A.; Miura, F. Evaluating the Extraction Approaches of Flood Extended Area by Using ALOS-2/PALSAR-2 Images as a Rapid Response to Flood Disaster. J. Geosci. Environ. Prot. 2015, 5, 40–61. [Google Scholar] [CrossRef]
- Kaku, K.; Held, A. Sentinel Asia: A space-based disaster management support system in the Asia-Pacific region. Int. J. Disaster Risk Reduct. 2013, 6, 1–17. [Google Scholar] [CrossRef]
- Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.; Raymond, S. River flood mapping in urban areas combining Radarsat-2 data and flood return period data. Remote Sens. Environ. 2016, 198, 442–459. [Google Scholar] [CrossRef]
- Costabile, P.; Macchione, F.; Natale, L.; Petaccia, G. Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Nat. Hazards 2015, 77, 181–204. [Google Scholar] [CrossRef]
- Jafarzadegan, K.; Merwade, V. A DEM-based approach for large scale floodplain mapping in ungauged watersheds. J. Hydrol. 2017, 550, 650–662. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A.; Aronica, G.T. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling. Adv. Geosci. 2017, 44, 23–34. [Google Scholar] [CrossRef]
- Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S. Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling. Hydrol. Earth Syst. Sci. 2015, 19, 3605–3616. [Google Scholar] [CrossRef]
- Costabile, P.; Macchione, F. Enhancing river model set-up for 2-D dynamic flood modelling. Environ. Model. Softw. 2015, 67, 89–107. [Google Scholar] [CrossRef]
- Balacco, G.; Figorito, B.; Tarantino, E.; Gioia, A.; Iacobellis, V. Space-time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 2015, 187, 434. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.; Anderson, M.; Price, D.; Hardy, R.; Smith, C. Analysis and Development of Hydraulic Models for Floodplain Flows, Floodplain Processes; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Bates, P.; Horritt, M.; Smith, C.; Mason, D. Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol. Process. 1997, 11, 1777–1795. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.M.P.F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographicdownscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2014, 158, 348–361. [Google Scholar] [CrossRef]
- Houser, P.R.; Shuttleworth, W.J.; Famiglietti, J.S.; Gupta, H.V.; Syed, K.H.; Goodrich, D.C. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res. 1998, 34, 3405–3420. [Google Scholar] [CrossRef]
- Manfreda, S.; Samela, C.; Gioia, A.; Consoli, G.G.; Iacobellis, V.; Giuzio, L.; Cantisani, A.; Sole, A. Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1d and 2d hydraulic models. Nat. Hazards 2015, 79, 735–754. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.V.; Hegerl, G.C.; Klein-Tank, A.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test; R package version 2.2. Available online: https://cran.r-project.org/web/packages/Kendall/Kendall.pdf (accessed on 16 May 2016).
- Vermote, E.F.; Vermeulen, A. MODIS Algorithm Technical Background Document, Atmospheric Correction Algorithm: Spectral Reflectances (MOD09); NASA contract NAS5-96062; University of Maryland: College Park, MD, USA, 1999. [Google Scholar]
- Amarnath, G.; Ameer, M.; Aggarwal, P.; Smakhtin, V. Detecting spatio-temporal changes in the extent of seasonal and annual flooding in South Asia using multi-resolution satellite data. In Earth Resources and Environmental Remote Sensing/GIS Applications III: Proceedings of the International Society for Optics and Photonics (SPIE), Volume 8538, Amsterdam, The Netherland, 1–6 July 2012; Civco, D.L., Ehlers, M., Habib, S., Maltese, A., Messinger, D., Michel, U., Nikolakopoulos, K.G., Schulz, K., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2012; p. 11. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal {MODIS} images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Islam, A.S.; Bala, S.K.; Haque, M.A. Flood inundation map of Bangladesh using MODIS time-series images. J. Flood Risk Manag. 2010, 3, 210–222. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDV I to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, H.; Hoekman, D.H.; Vissers, M.A.M.; Hoitink, A.J.F. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrol. Earth Syst. Sci. 2012, 16, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Malmgren, B.A.; Hulugalla, R.; Hayashi, Y.; Mikami, T. Precipitation trends in Sri Lanka since the 1870s and relationships to El Niño–southern oscillation. Int. J. Climatol. 2003, 23, 1235–1252. [Google Scholar] [CrossRef]
- Wickramagamage, P. Spatial and temporal variation of rainfall trends of Sri Lanka. Theor. Appl. Climatol. 2016, 125, 427–438. [Google Scholar] [CrossRef]
- Burt, T.; Weerasinghe, K. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data. Climate 2014, 2, 242–263. [Google Scholar] [CrossRef] [Green Version]
- IWMI (International Water Management Institute). Rapid Response Portal. 2017. Available online: http://www.iwmi.cgiar.org/resources/emergency-response-products-for-water-disasters/ (accessed on 6 December 2017).
Image Date | No of Scenes | Resolution (m) | Image Polarization |
---|---|---|---|
11 December 2006 | 2 | 12.5 | HH |
9 January 2007 | 4 | 12.5 | HH |
3 June 2008 | 5 | 12.5 | HH/HV |
17 December 2009 | 1 | 6.25 | HH |
15 May 2010 | 2 | 6.25 | HH |
6 February 2011 | 2 | 6.25 | HH |
30 September 2015 | 2 | 6.25 | HH |
24 May 2016 | 2 | 6.25 | HH |
16 May 2016 | 2 | 6.25 | HH |
Province | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2015 | 2016 | Provincial Total |
---|---|---|---|---|---|---|---|---|---|
Central | 16.9 | - | - | - | - | - | - | 4.5 | 21.4 |
Eastern | 73.1 | 217.1 | 85.7 | 314.8 | - | 412.2 | - | - | 1102.9 |
North Central | 240.6 | 35.8 | - | 3.9 | - | 89.6 | - | 207.5 | 577.4 |
North Western | - | - | 22.6 | - | 1.5 | - | - | 265.2 | 289.35 |
Northern | - | - | - | - | 8.8 | - | 345.2 | 354.05 | |
Sabaragamuwa | - | - | 11.2 | - | 10.9 | - | 27.1 | 87.5 | 136.7 |
Uva | 11.3 | 3.5 | 2.3 | 0.7 | - | 4.2 | 46.5 | - | 68.5 |
Southern | - | - | 50.3 | - | 38.2 | 5.1 | 185.2 | 205.7 | 484.55 |
Western | - | - | 173.2 | - | 185.9 | - | - | 345.5 | 704.6 |
Annual Total | 341.9 | 256.5 | 345.5 | 319.5 | 236.6 | 520.1 | 258.8 | 1461.25 | 3740.415 |
Land Use | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|
Forest/Vegetation | 10.12 | 14.76 | 60.66 | 17.88 | 50.22 | 30.99 | 19.5 | 110.5 |
Croplands/Irrigated | 224.87 | 122.95 | 161.38 | 173.05 | 111.56 | 256.22 | 168.25 | 772.25 |
Croplands/Vegetation | 106.23 | 95.63 | 93.75 | 94.28 | 63.15 | 154.75 | 56.5 | 482.5 |
Baren areas | 0.16 | 19.1 | 11.6 | 28.02 | 0 | 40.83 | 2.55 | 62.25 |
Shrub-land | 0.7 | 2.03 | 0.96 | 2.71 | 0 | 19.8 | 11 | 24 |
Grassland | 0 | 2.02 | 0.43 | 3.58 | 0 | 17.53 | 1 | 3.5 |
Artificial areas | 0 | 0.01 | 16.53 | 0 | 11.75 | 0 | 6.25 | |
Total | 342 | 256.5 | 345.5 | 319.5 | 236.6 | 520.1 | 258.8 | 1461.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahacoon, N.; Matheswaran, K.; Pani, P.; Amarnath, G. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka. Remote Sens. 2018, 10, 448. https://doi.org/10.3390/rs10030448
Alahacoon N, Matheswaran K, Pani P, Amarnath G. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka. Remote Sensing. 2018; 10(3):448. https://doi.org/10.3390/rs10030448
Chicago/Turabian StyleAlahacoon, Niranga, Karthikeyan Matheswaran, Peejush Pani, and Giriraj Amarnath. 2018. "A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka" Remote Sensing 10, no. 3: 448. https://doi.org/10.3390/rs10030448
APA StyleAlahacoon, N., Matheswaran, K., Pani, P., & Amarnath, G. (2018). A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka. Remote Sensing, 10(3), 448. https://doi.org/10.3390/rs10030448