Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest
Abstract
:1. Introduction
2. Study Area, Data and Preprocessing
2.1. Study Site
2.2. Field Data
2.3. Dataset and Preprocessing
3. Methods
3.1. Feature Extraction from Optical and Polarimetric SAR Data
3.2. Mangrove Species Classification Using Rotation Forest
3.3. Validation and Accuracy Assessment
4. Results
4.1. Mangrove Species Classification
4.2. Accuracy Assessment of the Classification
5. Discussion
5.1. Contributions from the Dual Polarimetric SAR Data
5.2. Factors Affecting Accuracy Assessment
5.3. Comments about Datasets and Methods
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Rogers, K.; Lymburner, L.; Salum, R.; Brooke, B.P.; Woodroffe, C.D. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data. Hydrobiologia 2017, 803, 49–68. [Google Scholar] [CrossRef]
- Bullock, E.L.; Fagherazzi, S.; Nardin, W.; Vo-Luong, P.; Nguyen, P.; Woodcock, C.E. Temporal patterns in species zonation in a mangrove forest in the mekong delta, vietnam, using a time series of Landsat imagery. Cont. Shelf Res. 2017, 147, 144–154. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P. Integration of object-based and pixel-based classification for mapping mangroves with ikonos imagery. Int. J. Remote Sens. 2004, 25, 5655–5668. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of Ikonos and Quickbird images for mapping mangrove species on the caribbean coast of panama. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bartolo, R. Mangrove species identification: Comparing Worldview-2 with aerial photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar] [CrossRef]
- Heumann, B.W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.S.; Lin, H.; Fang, C.Y. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery. Remote Sens. 2016, 8, 24. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, H.; Wang, T.; Li, G.; Lin, H. Mangrove species discrimination from very high resolution imagery using gaussian markov random field model. Wetlands 2017. accepted. [Google Scholar]
- Wang, L.; Sousa, W.P. Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. Int. J. Remote Sens. 2009, 30, 1267–1281. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S. Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sens. 2011, 3, 2222–2242. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Jia, M.M.; Wang, Z.M.; Zhang, Y.Z.; Ren, C.Y.; Song, K.S. Landsat-based estimation of mangrove forest loss and restoration in guangxi province, china, influenced by human and natural factors. IEEE J. STARS 2015, 8, 311–323. [Google Scholar] [CrossRef]
- Jia, M.M.; Zhang, Y.Z.; Wang, Z.M.; Song, K.S.; Ren, C.Y. Mapping the distribution of mangrove species in the core zone of mai po marshes nature reserve, hong kong, using hyperspectral data and high-resolution data. Int. J. Appl. Earth Obs. 2014, 33, 226–231. [Google Scholar] [CrossRef]
- Rahman, A.F.; Dragoni, D.; Didan, K.; Barreto-Munoz, A.; Hutabarat, J.A. Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity modis data. Remote Sens. Environ. 2013, 130, 96–107. [Google Scholar] [CrossRef]
- Mougin, E.; Proisy, C.; Marty, G.; Fromard, F.; Puig, H.; Betoulle, J.L.; Rudant, J.P. Multifrequency and multipolarization radar backscattering from mangrove forests. IEEE Trans. Geosci. Remote Sens. 1999, 37, 94–102. [Google Scholar] [CrossRef]
- Proisy, C.; Mougin, E.; Fromard, F.; Karam, M.A. Interpretation of polarimetric radar signatures of mangrove forests. Remote Sens. Environ. 2000, 71, 56–66. [Google Scholar] [CrossRef]
- Kumar, T.; Patnaik, C. Discrimination of mangrove forests and characterization of adjoining land cover classes using temporal C-band synthetic aperture radar data: A case study of sundarbans. Int. J. Appl. Earth Obs. 2013, 23, 119–131. [Google Scholar] [CrossRef]
- Lucas, R.M.; Mitchell, A.L.; Rosenqvist, A.; Proisy, C.; Melius, A.; Ticehurst, C. The potential of l-band sar for quantifying mangrove characteristics and change: Case studies from the tropics. Aquat. Conserv. 2007, 17, 245–264. [Google Scholar] [CrossRef]
- Simard, M.; Zhang, K.Q.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castaneda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in everglades national park with srtm elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Kalogirou, V.; Ferrazzoli, P.; Della Vecchia, A.; Foumelis, M. On the SAR backscatter of burned forests: A model-based study in C-band, over burned pine canopies. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6205–6215. [Google Scholar] [CrossRef]
- Picard, G.; Le Toan, T.; Mattia, F. Understanding C-band radar backscatter from wheat canopy using a multiple-scattering coherent model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1583–1591. [Google Scholar] [CrossRef]
- De Roo, R.D.; Du, Y.; Ulaby, F.T.; Dobson, M.C. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 864–872. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Israelsson, H. Estimation of stem volume in boreal forests using ERS-1 C- and jers-1 L-band SAR data. Int. J. Remote Sens. 1999, 20, 123–137. [Google Scholar] [CrossRef]
- Hamdan, O.; Aziz, H.K.; Hasmadi, I.M. L-band ALOS PALSAR for biomass estimation of matang mangroves, malaysia. Remote Sens. Environ. 2014, 155, 69–78. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Vandenberg, C.V.; Wang, J.; Flores-Verdugo, F. The use of multipolarized spaceborne SAR backscatter for monitoring the health of a degraded mangrove forest. J. Coast. Res. 2008, 24, 248–254. [Google Scholar] [CrossRef]
- Zhang, H.S.; Xu, R. Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the pearl river delta. Int. J. Appl. Earth Obs. 2018, 64, 87–95. [Google Scholar] [CrossRef]
- Zhang, H.S.; Lin, H.; Li, Y.; Zhang, Y.Z.; Fang, C.Y. Mapping urban impervious surface with dual-polarimetric SAR data: An improved method. Landsc. Urban Plan. 2016, 151, 55–63. [Google Scholar] [CrossRef]
- Zhang, H.S.; Lin, H.; Zhang, Y.Z.; Weng, Q.H. Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Souza, P.W.M.; Paradella, W.R. Use of radarsat-1 fine mode and Landsat-5 tm selective principal component analysis for geomorphological mapping in a macrotidal mangrove coast in the amazon region. Can. J. Remote Sens. 2005, 31, 214–224. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Zhang, C.; Flores-Verdugo, F.J. Mapping the condition of mangroves of the mexican pacific using C-band envisat asar and landsat optical data. Cienc. Mar. 2008, 34, 407–418. [Google Scholar] [CrossRef]
- Wong, F.K.K.; Fung, T. Combining hyperspectral and radar imagery for mangrove leaf area index modeling. Photogramm. Eng. Remote Sens. 2013, 79, 479–490. [Google Scholar] [CrossRef]
- Wong, F.K.K.; Fung, T. Combining eo-1 hyperion and ENVISAT ASAR data for mangrove species classification in mai po ramsar site, hong kong. Int. J. Remote Sens. 2014, 35, 7828–7856. [Google Scholar] [CrossRef]
- AFCD. Mai Po Inner Deep Bay Ramsar Site Management Plan Executive Summary; Agriculture, Fisheries and Conservation Department (AFCD): Hong Kong, China, 2011.
- Zhang, Y.Z.; Zhang, H.S.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Wells, S.; Ravilious, C.; Corcoran, E. In the Front-Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs; The UN Environment World Conservation Monitoring Centre (UNEP-WCMC): Cambridge, UK, 2006. [Google Scholar]
- Tam, N.F.Y.; Wong, Y.S. Hong Kong Mangroves; City University of Hong Kong Press: Hong Kong, China, 2000. [Google Scholar]
- Tam, N.F.Y.; Wong, Y.S.; Lu, C.Y.; Berry, R. Mapping and characterization of mangrove plant communities in Hong Kong. Hydrobiologia 1997, 352, 25–37. [Google Scholar] [CrossRef]
- Peng, C.; Qian, J.; Guo, X.; Zhao, H.; Hu, N.; Yang, Q.; Chen, L. Vegetative carbon stocks and net primary productivity of the mangrove forests in shenzhen, china. Chin. J. Appl. Ecol. 2016, 27, 2059–2065. [Google Scholar]
- Tam, N.F.Y.; Wong, Y.S.; Lan, C.Y.; Chen, G.Z. Community structure and standing crop biomass of a mangrove forest in futian nature-reserve, shenzhen, china. Hydrobiologia 1995, 295, 193–201. [Google Scholar] [CrossRef]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J.L. Normalized difference vegetation index measurements from the advanced very high-resolution radiometer. Remote Sens. Environ. 1991, 35, 257–277. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (ndwi) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmuga, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, Smc3, 610–621. [Google Scholar] [CrossRef]
- Cloude, S.R. The Dual Polarisation Entropy/Alpha Decomposition: A Palsar Case Study. 2007. Available online: http://earth.esa.int/workshops/polinsar2007/papers/75_cloude.pdf (accessed on 26 January 2007).
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric sar. IEEE Trans. Geosci Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Rodriguez, J.J.; Kuncheva, L.I. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Du, P.J.; Samat, A.; Waske, B.; Liu, S.C.; Li, Z.H. Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features. ISPRS J. Photogramm. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, H.S.; Zhang, Y.Z.; Lin, H. A comparison study of impervious surfaces estimation using optical and sar remote sensing images. Int. J. Appl. Earth Obs. 2012, 18, 148–156. [Google Scholar] [CrossRef]
- Weston, J.; Watkins, C. Support Vector Machines for Multi-Class Pattern Recognition. In Proceedings of the 7th European Symposium on Artificial Neural Networks, Bruges, Belgium, 21–23 April 1999; Verleysen, M., Ed.; D-Facto: Bruges, Belgium, 1999. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Pearson Education Ltd.: London, UK, 2007. [Google Scholar]
- Zhang, H.S.; Lin, H.; Li, Y.; Zhang, Y.Z. Feature extraction for high-resolution imagery based on human visual perception. Int. J. Remote Sens. 2013, 34, 1146–1163. [Google Scholar] [CrossRef]
- Luo, Y.M.; Huang, D.T.; Liu, P.Z.; Feng, H.M. An novel random forests and its application to the classification of mangroves remote sensing image. Multimed. Tools Appl. 2016, 75, 9707–9722. [Google Scholar] [CrossRef]
- Jia, M.M.; Wang, Z.M.; Li, L.; Song, K.S.; Ren, C.Y.; Liu, B.; Mao, D.H. Mapping china’s mangroves based on an object-oriented classification of Landsat imagery. Wetlands 2014, 34, 277–283. [Google Scholar] [CrossRef]
Satellite | Date | Spectral/Polarizations | Resolution |
---|---|---|---|
Worldview-3 | 1 January 2015 | Coastal: 400–450 nm | 1.6 m |
Blue: 450–510 nm | |||
Green: 510–580 nm | |||
Yellow: 585–625 nm | |||
Red: 630–690 nm | |||
Red Edge: 705–745 nm | |||
Near Infrared 1: 770–895 nm | |||
Near Infrared 2: 860–1040 nm | |||
Radarsat-2 | 8 November 2014 | HH, HV | 8 m |
Class | Training (Samples) | Testing (Samples) | Total (Samples) |
---|---|---|---|
KO | 80 | 20 | 100 |
AM | 114 | 29 | 143 |
AI | 97 | 25 | 122 |
AC | 52 | 14 | 66 |
MUD | 105 | 27 | 132 |
WATER | 124 | 31 | 155 |
Total | 572 | 146 | 718 |
Reference | WV3 | WV3F | WV3FRS2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Classified | KO | AM | AI | AC | KO | AM | AI | AC | KO | AM | AI | AC | |
SVM | KO | 17 | 3 | 0 | 0 | 18 | 0 | 0 | 0 | 17 | 0 | 0 | 0 |
AM | 3 | 19 | 12 | 5 | 2 | 26 | 3 | 6 | 3 | 26 | 2 | 6 | |
AI | 0 | 7 | 13 | 9 | 0 | 3 | 19 | 3 | 0 | 3 | 20 | 1 | |
AC | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 5 | 0 | 0 | 3 | 7 | |
OA: 55.68%; kappa: 0.3746 | OA: 77.27%; kappa: 0.6842 | OA: 79.55%; kappa: 0.7167 | |||||||||||
RF | KO | 17 | 3 | 0 | 0 | 18 | 0 | 0 | 0 | 19 | 0 | 0 | 0 |
AM | 3 | 20 | 9 | 1 | 2 | 27 | 4 | 3 | 1 | 27 | 4 | 3 | |
AI | 0 | 3 | 13 | 5 | 0 | 2 | 20 | 3 | 0 | 2 | 20 | 3 | |
AC | 0 | 3 | 3 | 8 | 0 | 0 | 1 | 8 | 0 | 0 | 1 | 8 | |
OA: 65.91%; kappa: 0.5341 | OA: 82.95%; kappa: 0.7638 | OA: 84.09%; kappa: 0.7799 | |||||||||||
RoF | KO | 18 | 1 | 0 | 1 | 18 | 0 | 0 | 0 | 19 | 0 | 0 | 0 |
AM | 2 | 20 | 8 | 3 | 2 | 27 | 3 | 3 | 1 | 28 | 4 | 3 | |
AI | 0 | 4 | 13 | 6 | 0 | 2 | 21 | 4 | 0 | 1 | 20 | 3 | |
AC | 0 | 4 | 3 | 4 | 0 | 0 | 1 | 7 | 0 | 0 | 1 | 8 | |
OA: 63.22%; kappa: 0.4944 | OA: 82.95%; kappa: 0.7635 | OA: 85.23%; kappa: 0.7955 |
WV3FRS2 | Minimum | Maximum | Mean | Standard Deviation | |
---|---|---|---|---|---|
RF | OA | 76.74% | 88.37% | 82.36% | 4.69 |
Kappa | 0.6747 | 0.8404 | 0.7567 | 0.06 | |
RoF | OA | 76.74% | 90.70% | 85.61% | 4.38 |
Kappa | 0.6866 | 0.8720 | 0.8021 | 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, T.; Liu, M.; Jia, M.; Lin, H.; Chu, L.; Devlin, A.T. Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest. Remote Sens. 2018, 10, 467. https://doi.org/10.3390/rs10030467
Zhang H, Wang T, Liu M, Jia M, Lin H, Chu L, Devlin AT. Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest. Remote Sensing. 2018; 10(3):467. https://doi.org/10.3390/rs10030467
Chicago/Turabian StyleZhang, Hongsheng, Ting Wang, Mingfeng Liu, Mingming Jia, Hui Lin, LM Chu, and Adam Thomas Devlin. 2018. "Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest" Remote Sensing 10, no. 3: 467. https://doi.org/10.3390/rs10030467
APA StyleZhang, H., Wang, T., Liu, M., Jia, M., Lin, H., Chu, L., & Devlin, A. T. (2018). Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest. Remote Sensing, 10(3), 467. https://doi.org/10.3390/rs10030467