Application of Ground Penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Ground Penetrating Radar (GPR)
3.2. X-ray Diffractometry (XRD)
3.3. X-ray Fluorescence (XRF)
4. Results
4.1. GPR Results at Testing Locations
4.2. A Comparison of GPR Images Conducted in Different Time Periods
4.3. GPR Results at Other Locations
4.4. XRD and XRF Results
4.5. Integration of Results
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Knez, M.; Slabe, T. Unroofed caves and recognising them in karst relief (discovered during motorway construction at Kozina, South Slovenia). Acta Carsol. 1999, 28, 103–112. [Google Scholar] [CrossRef]
- Mihevc, A. Uporaba Lidarskih Posnetkov v Geomorfologiji Krasa na Primeru Brezstropih Jam. Zbornik Posvetovanja Raziskave s Področja Geodezije in Geofizike 2015; Slovensko združenje za geodezijo in geofiziko: Ljubljana, Slovenia, 2015; pp. 141–149. [Google Scholar]
- Mihevc, A. Brezstropa jama pri Povirju. Naše Jame 1996, 38, 65–75. [Google Scholar]
- Mihevc, A. Speleogeneza Divaškega Krasa; ZRC: Ljubljana, Slovenia, 2001; p. 180. [Google Scholar]
- Mihevc, A.; Slabe, T.; Šebela, S. Denuded caves: An inherited element in the karst morphology; the case from Kras. Acta Carsol. 1998, 27, 165–174. [Google Scholar]
- Šušteršič, F. Interaction between a cave system and the lowering karst surface; case study: Laški ravnik. Acta Carsol. 1998, 27, 115–138. [Google Scholar] [CrossRef]
- Knez, M.; Slabe, T. Unroofed caves are an important feature of karst surfaces: Examples from the classical karst. Z. Geomorphol. 2002, 46, 181–191. [Google Scholar]
- Mais, K. Roofless caves, a polygenetic status of cave development with special references to cave regions in the Eastern Calcareous Alps in Salzburg and Central Alps, Austria. Acta Carsol. 1999, 28, 145–158. [Google Scholar] [CrossRef]
- Osborne, R.A.L. Karst geology of Wellington Caves: A review. Helictite 2001, 37, 3–12. [Google Scholar]
- Klimchouk, A. Cave un-roofing as a large-scale geomorphic process. Speleogenesis Evolution Karst Aquifers 2006, 4, 1–11. [Google Scholar]
- Ufrecht, W. Evaluating landscape development and karstification of the Central Schwäbische Alb (Southwest Germany) by fossil record of karst fillings. Z. Geomorphol. 2008, 52, 417–436. [Google Scholar] [CrossRef]
- Knez, M.; Slabe, T. Cave Exploration in Slovenia: Discovering Over 350 New Caves during Motorway Construction on Classical Karst, (Cave and Karst Systems of the World); Springer: Cham, Switzerland, 2016; p. 324. [Google Scholar]
- Čeru, T.; Šegina, E.; Knez, M.; Benac, Č.; Gosar, A. Detecting and characterizing unroofed caves by ground penetrating radar. Geomorphology 2018, 303, 524–539. [Google Scholar] [CrossRef]
- White, W.B. Cave sediments and paleoclimate. J. Cave Karst Stud. 2007, 69, 76–93. [Google Scholar]
- Zupan Hajna, N.; Pruner, P.; Mihevc, A.; Schnabl, P.; Bosák, P. Cave sediments from the Postojnska-Planinska cave system (Slovenia): Evidence of multi-phase evolution in epiphreatic zone. Acta Carsol. 2008, 37, 63–86. [Google Scholar] [CrossRef]
- Sasowsky, I.D. Clastic sediments in caves—Imperfect recorders of processes in karst. Acta Carsol. 2007, 36, 143–149. [Google Scholar] [CrossRef]
- Arriolabengoa, M.; Iriarte, E.; Aranburu, A.; Yusta, I.; Arrizabalaga, A. Provenance study of endokarst fine sediments through mineralogical and geochemical data (Lezetxiki II cave, northern Iberia). Quat. Int. 2015, 364, 231–243. [Google Scholar] [CrossRef]
- Martini, I. Cave clastic sediments and implications for speleogenesis: New insights from the Mugnano cave (Montagnola Senese, Northern Apennines, Italy). Geomorphology 2011, 134, 452–460. [Google Scholar] [CrossRef]
- Bónová, K.; Bella, P.; Bóna, J.; Spišiak, J.; Kováčik, M.; Kováčik, M.; Petro, L. Heavy minerals in sediments from the Mošnica Cave: Implications for the pre-Quaternary evolution of the middle-mountain allogenic karst in the Nízke Tatry Mts., Slovakia. Acta Carsol. 2014, 43, 297–317. [Google Scholar] [CrossRef]
- Šušteršič, F.; Rejšek, K.; Mišič, M.; Eichler, F. The role of loamy sediment (terra rossa) in the context of steady state karst surface lowering. Geomorphology 2009, 106, 35–45. [Google Scholar] [CrossRef]
- Mihevc, A.; Zupan Hajna, N. Clastic sediments from dolines and caves found during the construction of the motorway near Divača, on the Classical Karst. Acta Carsol. 1996, 25, 169–191. [Google Scholar]
- Breiner, J.M.; Doolittle, J.A.; Horton, R.M.; Graham, R.C. Performance of ground-penetrating radar on granitic regoliths with different mineral composition. Soil Sci. 2011, 176, 435–440. [Google Scholar] [CrossRef]
- Van Dam, R.M.; Hendrickx, J.M.H.; Cassidy, N.J.; North, R.E.; Dogan, M.; Borchers, B. Effects of magnetite on high-frequency ground-penetrating radar. Geophysics 2013, 78, H1–H11. [Google Scholar] [CrossRef]
- Van Dam, R.L. Causes of ground-penetrating radar reflections in sediment. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 2001; p. 101. [Google Scholar]
- Čar, J. Geološka zgradba požiralnega obrobja Planinskega polja (Geological setting of the Planina polje ponor area). Acta Carsol. 1981, 10, 75–105. [Google Scholar]
- Šušteršič, F. A conceptual model of dinaric solution doline dynamics. Cave Karst Sci. 2017, 44, 66–75. [Google Scholar]
- Buser, S.; Grad, K.; Pleničar, M. Basic Geological Map of Yugoslavia, Sheet Postojna, L33–77; Federal Geological Survey of Beograd: Beograd, Srbija, 1967. [Google Scholar]
- LiDAR (Public Information of Slovenia, the Surveying and Mapping Authority of the Republic of Slovenia, LiDAR, 2015) ARSO, Ministry of the Environment. Available online: http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso (accessed on 5 March 2018).
- Šušteršič, F. Cave Sediments and Denuded Caverns in the Laški Ravnik, Classical Karst of Slovenia. In Studies of Cave Sediments: Physical and Chemical Records of Paleoclimate; Sasowsky, I.D., Mylroie, J., Eds.; Springer: New York, NY, USA, 2004; pp. 123–134. [Google Scholar]
- Silva, O.L.; Bezerra, F.H.R.; Maia, R.P.; Cazarin, C.L. Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints. Geomorphology 2017, 295, 611–630. [Google Scholar] [CrossRef]
- Kruse, S.; Grasmueck, M.; Weiss, M.; Viggiano, D. Sinkhole structure imaging in covered karst terrain. Geophys. Res. Lett. 2006, 33, L16405. [Google Scholar] [CrossRef]
- Pueyo-Anchuela, Ó.; López Julián, P.L.; Casas-Sainz, A.M.; Liesa, C.L.; Pocoví-Juan, A.; Ramajo Cordero, J.; Perez Benedicto, J.A. Three dimensional characterization of complex mantled karst structures. Decision making and engineering solutions applied to a road overlying evaporite rocks in the Ebro Basin (Spain). Eng. Geol. 2015, 193, 158–172. [Google Scholar] [CrossRef]
- Guidry, S.A.; Grasmueck, M.; Carpenter, D.G.; Gombos, A.M. Jr.; Bachtel, S.L.; Viggiano, D.A. Karst and early fracture networks in carbonates, Turks and Caicos Islands, British West Indies. J. Sediment. Res. 2007, 77, 508–524. [Google Scholar] [CrossRef]
- Fernandes, A.L.; Medeiros, W.E.; Bezerra, F.H.R.; Oliveira, J.G.; Cazarin, C.L. GPR investigation of karst guided by comparison with outcrop and unmanned aerial vehicle imagery. J. Appl. Geophys. 2015, 112, 268–278. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Doolittle, J. Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils. Geoderma 2014, 213, 560–569. [Google Scholar] [CrossRef]
- Simeoni, M.A.; Galloway, P.D.; O’Neil, A.J.; Gilkes, R.J. A procedure for mapping the depth to the texture contrast horizon of duplex soils in south-western Australia using ground penetrating radar, GPRS and kriging. Aust. J. Soil Res. 2009, 47, 613–621. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Collins, M.E. A comparison of EM induction and GPR methods in areas of karst. Geoderma 1998, 85, 83–102. [Google Scholar] [CrossRef]
- Stroh, J.C.; Archer, S.; Doolittle, J.A.; Wilding, L. Detection of edaphic discontinuities with ground-penetrating radar and electromagnetic induction. Landsc. Ecol. 2001, 16, 377–390. [Google Scholar] [CrossRef]
- Čeru, T.; Šegina, E.; Gosar, A. Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sens. 2017, 9, 1213. [Google Scholar] [CrossRef]
- Gish, T.J.; Walthall, C.L.; Daughtry, C.S.; Kung, K.J. Using soil moisture and spatial yield patterns to identify subsurface flow pathways. J. Environ. Qual. 2005, 34, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.A.; Snepvangers, J.J.J.C.; Bouten, W.; Heuvelink, G.B.M. Mapping spatial variation in surface soil water content: Comparison of ground-penetrating radar and time domain reflectometry. J. Hydrol. 2002, 269, 194–207. [Google Scholar] [CrossRef]
- Kowalsky, M.B.; Finsterle, S.; Rubin, Y. Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv. Water Res. 2004, 27, 583–599. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2009; p. 524. [Google Scholar]
- Ehsani, M.R.; Daniels, J.J.; Allred, B.J. Handbook of Agricultural Geophysics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 432. [Google Scholar]
- Waltham, T.; Bell, F.; Culshaw, M. Sinkoles and Subsidence. Karst and Cavernous Rocks in Engineering and Construction; Springer: Berlin, Germany, 2010; pp. 181–204. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997; p. 378. [Google Scholar]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology, Geotechnologies and the Environment; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Krebs, C.J. Ecological Methodology; Addison Wesly Longman: New York, NY, USA, 1998. [Google Scholar]
- Li, W.; Cui, X.; Guo, L.; Chen, J.; Chen, X.; Cao, X. Tree Root Automatic Recognition in Ground Penetrating Radar Profiles Based on Randomized Hough Transform. Remote Sens. 2016, 8, 430. [Google Scholar] [CrossRef]
- Bernhardson, M.; Alexanderson, H. Early Holocene dune field development in Dalarna, central Sweden: A geomorphological and geophysical case study. Earth Surf. Process. Landf. 2017, 42, 1847–1859. [Google Scholar] [CrossRef]
- Sinclair, S.N.; Licciardi, J.M.; Campbell, S.W.; Madore, B.M. Character and origin of De Geer moraines in the Seacoast region of New Hampshire, USA. J. Quaternary Sci. 2018, 33, 225–237. [Google Scholar] [CrossRef]
- Nooren, K.; Hoek, W.Z.; Winkels, T.; Huizinga, A.; Van der Plicht, H. The Usumacinta–Grijalva beach-ridge plain in southern Mexico: A high-resolution archive of river discharge and precipitation. Earth Surf. Dynam. 2017, 5, 529–556. [Google Scholar] [CrossRef]
- Oliver, T.S.N.; Tamura, T.; Hudson, J.P.; Woodroffe, C.D. Integrating millennial and interdecadal shoreline changes: Morpho-sedimentary investigation of two prograded barriers in southeastern Australia. Geomorphpology 2017, 288, 129–147. [Google Scholar] [CrossRef]
- Kasprzak, M.; Sobczyk, A. Searching for the void: Improving cave detection accuracy by multi-faceted geophysical survey reconciled with LiDAR DTM. Z. Geomorphol. 2017, 61, 45–59. [Google Scholar] [CrossRef]
- Helfricht, K.; Kuhn, M.; Keuschnig, M.; Heilig, A. Lidar snow cover studies on glaciers in the Ötztal Alps (Austria): Comparison with snow depths calculated from GPR measurements. Cryosphere 2014, 8, 41–57. [Google Scholar] [CrossRef]
- Colucci, R.R.; Forte, E.; Boccali, C.; Dossi, M.; Lanza, L.; Pipan, M.; Guglielmin, M. Evaluation of internal structure, volume and mass of glacial bodies by integrated lidar and ground penetrating radar surveys: The case study of Canin eastern glacieret (Julian Alps, Italy). Surv. Geophys. 2015, 36, 231–252. [Google Scholar] [CrossRef]
- Malehmir, A.; Andersson, M.; Mehta, S.; Brodic, B.; Munier, R.; Place, J.; Maries, G.; Smith, C.; Kamm, J.; Bastani, M.; et al. Post-glacial reactivation of the Bollnäs fault, central Sweden—A multidisciplinary geophysical investigation. Solid Earth 2016, 7, 509–527. [Google Scholar] [CrossRef]
- Bubeck, A.; Wilkinson, M.; Roberts, G.P.; Cowie, P.A.; McCaffrey, K.J.W.; Phillips, R.; Sammonds, P. The tectonic geomorphology of bedrock scarps on active normal faults in the italian apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology 2015, 237, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Leucci, G.; Margiotta, S.; Negri, S. Geophysical and geological investigations in a karstic environment (Salice Salentino, Lecce, Italy). J. Environ. Eng. Geophys. 2004, 9, 25–34. [Google Scholar] [CrossRef]
- Boll, J.; van Rijn, R.P.G.; Weiler, K.W.; Ewen, J.A.; Daliparthy, J.; Herbert, S.J.; Steenhuis, T.S. Using ground-penetrating radar to detect layers in a sandy field soil. Geoderma 1996, 70, 117–132. [Google Scholar] [CrossRef]
- Lunt, I.A.; Hubbard, S.S.; Rubin, Y. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol. 2005, 307, 254–269. [Google Scholar] [CrossRef]
- Słowik, M. Influence of measurement conditions on depth range and resolution of GPR images: The example of lowland valley alluvial fill (the Obra River, Poland). J. Appl. Geophys. 2012, 85, 1–14. [Google Scholar] [CrossRef]
- Tatum, D.; Francke, J. Radar suitability in aeolian sand dunes—A global review. In Proceedings of the 14th International Conference on Ground Penetrating Radar, Shanghai, China, 4–8 June 2012; Volume III, pp. 1–706. [Google Scholar] [CrossRef]
- Truss, S.; Grasmueck, M.; Vega, S.; Viggiano, D.A. Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar. Water Resour. Res. 2007, 43, 1–15. [Google Scholar] [CrossRef]
- Słowik, M. Analysis of fluvial, lacustrine and anthropogenic landforms by means of ground-penetrating radar (GPR): Field experiment. Near Surf. Geophys. 2014, 12, 777–791. [Google Scholar] [CrossRef]
- Van Dam, R.L.; Schlager, W.; Dekkers, M.J.; Huisman, J.A. Iron oxides as a cause of GPR reflections. Geophysics 2002, 67, 536–545. [Google Scholar] [CrossRef]
Profile | Antenna Frequency | General Direction | Period of Measuring | Field Conditions | Indicators for the Presence of Cave Sediments | |
---|---|---|---|---|---|---|
Profile 1 | 50 and 250 | SE-NW | July 2016 March 2017 | very dry dry | colour of sediments, flowstone | Testing Profiles |
Profile 2a | 50 and 250 | SSW-NNE | March 2017 January 2018 | dry moderately wet | colour of sediments, small pieces of flowstone | |
Profile 2b | 50 and 250 | E-W | March 2017 January 2018 | dry moderately wet | colour of sediments, small pieces of flowstone | |
Profile 3 | 250 | SSW-NNE | July 2016 | very dry | colour of sediments, flowstone | |
Profile 4 | 50 and 250 | SSE-NNW, ESE-WNW | January 2018 | moderately wet | deepening on the road, water retention, septarian concretions in cave sediments | |
Profile 5 | 250 | NNW-SSE | July 2016 | very dry | deepening on the road, water retention | |
Profile 6 | 50 | SE-NW | July 2016 | very dry | flowstone at one location |
Sample | Depth (cm) | Colour (Munsel Soil Chart) | |
---|---|---|---|
cave sediments V1 | 1V1 | 0–20 | 7.5YR 5/6–7.5YR 5/8 |
2V1 | 20–50 | 5YR 3/4 | |
3V1 | 50–85 | 5YR 3/4 | |
cave sediments V2 | 1V2 | 0–20 | 7.5YR 4/4 |
2V2 | 20–40 | 5YR 4/4 | |
3V2 | 40–70 | 5YR 4/4 | |
4V2 | 70–95 | 5YR 4/4 | |
soil on carbonate rocks (rendzina) V3 | 1V3 | 0–20 | 10YR 5/3 |
2V3 | 20–50 | 10YR 4/3 | |
3V3 | 50–85 | 10YR 4/4–10YR 4/6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čeru, T.; Dolenec, M.; Gosar, A. Application of Ground Penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments. Remote Sens. 2018, 10, 639. https://doi.org/10.3390/rs10040639
Čeru T, Dolenec M, Gosar A. Application of Ground Penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments. Remote Sensing. 2018; 10(4):639. https://doi.org/10.3390/rs10040639
Chicago/Turabian StyleČeru, Teja, Matej Dolenec, and Andrej Gosar. 2018. "Application of Ground Penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments" Remote Sensing 10, no. 4: 639. https://doi.org/10.3390/rs10040639
APA StyleČeru, T., Dolenec, M., & Gosar, A. (2018). Application of Ground Penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments. Remote Sensing, 10(4), 639. https://doi.org/10.3390/rs10040639