Meteo-Marine Parameters from Sentinel-1 SAR Imagery: Towards Near Real-Time Services for the Baltic Sea
Abstract
:1. Introduction
1.1. Meteo-Marine Parameters in the Baltic Sea in Relation to Synthetic Aperture Radar
1.2. Sentinel-1A/B Data over the Baltic Sea
1.3. Aim of the Study
2. Data
2.1. In Situ Data
2.2. Sentinel-1A/B Data
2.3. Spectral Wave Model
3. Methods
3.1. Wind
3.2. Sea State
- -
- radar signal much stronger than background backscatter from sea state produced mainly by ships or offshore constructions. In these cases, the subscene is additionally analyzed with 100 × 100 m sliding window. The statistics of each window is compared with of the subscene. In a case of with tuned qship value of 2.3 (for 100 × 100 m window), the outliers in the current window are replaced with the mean value of the subscene [20];
- -
- radar signal much weaker than background backscatter from sea state produced, for example, by oil spills, or commonly occurring algae blooms in the Baltic Sea [20]. In those cases, the filtering algorithm was extended by employing with tuned threshold coefficient qspills.
3.3. Comparison Methods
4. Results
4.1. Validation
4.2. Case Studies: High, Medium, and Low Sea State
5. Discussion
5.1. Benefits of Sentinel-1A/B IW Wave Field Data for Operational Services
5.2. Statistical Mapping of Coastal/Regional Wave Field: Comparison with Altimetry
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lehner, S.; Schulz-Stellenfleth, J.; Brusch, S.; Li, X.M. Use of TerraSAR-X data for oceanography. In Proceedings of the 2008 7th European Conference on Synthetic Aperture Radar (EUSAR), Rome, Italy, 26–30 May 2008; pp. 1–4. [Google Scholar]
- Li, X.; Lehner, S.; Rosenthal, W. Investigation of ocean surface wave refraction using TerraSAR-X data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 830–840. [Google Scholar]
- Beal, R.C.; Tilley, D.G.; Monaldo, F.M. Large-And Small-Scale Spatial Evolution of Digitally Processed Ocean Wave Spectra from SEASAT Synthetic Aperture Radar. J. Geophys. Res. Oceans 1983, 88, 1761–1778. [Google Scholar] [CrossRef]
- Masuko, H.; Okamoto, K.I.; Shimada, M.; Niwa, S. Measurement of Microwave Backscattering Signatures of the Ocean Surface Using X Band and Ka Band Airborne Scatterometers. J. Geophys. Res. Oceans 1986, 91, 13065–13083. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J. Ocean Wave Measurements Using Complex Synthetic Aperture Radar Data; University of Hamburg: Hamburg, Germany, 2004. [Google Scholar]
- Hasselmann, K.; Hasselmann, S. On the Nonlinear Mapping of an Ocean Wave Spectrum into a Synthetic Aperture Radar Image Spectrum and Its Inversion. J. Geophys. Res. Oceans 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Hasselmann, S.; Brüning, C.; Hasselmann, K.; Heimbach, P. An Improved Algorithm for the Retrieval of Ocean Wave Spectra from Synthetic Aperture Radar Image Spectra. J. Geophys. Res. Oceans 1996, 101, 16615–16629. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S.; Hoja, D. A Parametric Scheme for the Retrieval of Two-Dimensional Ocean Wave Spectra from Synthetic Aperture Radar Look Cross Spectra. J. Geophys. Res. Oceans 2005, 110, C05004. [Google Scholar] [CrossRef]
- Alpers, W.R.; Ross, D.B.; Rufenach, C.L. On the Detectability of Ocean Surface Waves by Real and Synthetic Aperture Radar. J. Geophys. Res. Oceans 1981, 86, 6481–6498. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Unconstrained Inversion of Waveheight Spectra from SAR Images. IEEE Trans. Geosci. Remote Sens. 2002, 40, 261–270. [Google Scholar] [CrossRef]
- Bruck, M. Sea State Measurements Using TerraSAR-X/TanDEM-X Data; Christian-Albrechts-Universität zu Kiel: Kiel, Germany, 2015. [Google Scholar]
- Li, X.M.; Lehner, S.; Bruns, T. Ocean Wave Integral Parameter Measurements Using ENVISAT ASAR Wave Mode Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Pleskachevsky, A.L.; Rosenthal, W.; Lehner, S. Meteo-Marine Parameters for Highly Variable Environment in Coastal Regions from Satellite Radar Images. ISPRS J. Photogr. Remote Sens. 2016, 119, 464–484. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; König, T.; Lehner, S. An Empirical Approach for the Retrieval of Integral Ocean Wave Parameters from Synthetic Aperture Radar Data. J. Geophys. Res. Oceans 2007, 112, C03019. [Google Scholar] [CrossRef]
- Stopa, J.E.; Mouche, A. Significant wave heights from Sentinel-1 SAR: Validation and applications. J. Geophys. Res. Oceans 2017, 122, 1827–1848. [Google Scholar] [CrossRef]
- Schwarz, E.; Krause, D.; Berg, M.; Daedelow, H.; Maass, H. Near Real Time Applications for Maritime Situational Awareness. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 2015, 40, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Soomere, T.; Räämet, A. Spatial Patterns of the Wave Climate in the Baltic Proper and the Gulf of Finland. Oceanologia 2011, 53, 335–371. [Google Scholar] [CrossRef]
- Björkqvist, J.-V.; Lukas, I.; Alari, V.; van Vledder, G.P.; Hulst, S.; Pettersson, H.; Behrens, A.; Männik, A. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng. 2018, 152, 57–71. [Google Scholar] [CrossRef]
- Tuomi, L.; Kahma, K.K.; Pettersson, H. Wave hindcast statistics in the seasonally ice-covered Baltic sea. Boreal Environ. Res. 2011, 16, 451–472. [Google Scholar]
- Pleskachevsky, A.; Jacobsen, S.; Tings, B.; Schwarz, E. Sea State from Sentinel-1 Synthetic Aperture Radar Imagery for Maritime Situation Awareness. Int. J. Remote Sens. submitted.
- Rikka, S.; Pleskachevsky, A.; Uiboupin, R.; Jacobsen, S. Sea state in the Baltic Sea from space-borne high-resolution synthetic aperture radar imagery. Int. J. Remote Sens. 2018, 39, 1256–1284. [Google Scholar] [CrossRef]
- Ressel, R.; Singha, S.; Lehner, S.; Rösel, A.; Spreen, G. Investigation into Different Polarimetric Features for Sea Ice Classification Using X-Band Synthetic Aperture Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3131–3143. [Google Scholar] [CrossRef] [Green Version]
- Singha, S.; Velotto, D.; Lehner, S. Dual-polarimetric feature extraction and evaluation for oil spill detection: A near real time perspective. In Proceedings of the 2015 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3235–3238. [Google Scholar]
- Velotto, D.; Bentes, C.; Tings, B.; Lehner, S. First Comparison of Sentinel-1 and TerraSAR-X Data in the Framework of Maritime Targets Detection: South Italy Case. IEEE J. Ocean. Eng. 2016, 41, 993–1006. [Google Scholar] [CrossRef]
- Ardhuin, F.; Stopa, J.; Chapron, B.; Collard, F.; Smith, M.; Thomson, J.; Doble, M.; Blomquist, B.; Persson, O.; Collins III, C.O. Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data. Remote Sens. Environ. 2017, 189, 211–222. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, Z.; Li, X.; Li, H. Ocean wave parameters retrieval from Sentinel-1 SAR imagery. Remote Sens. 2016, 8, 707. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Collard, F.; Ardhuin, F.; Chapron, B. Monitoring and analysis of ocean swell fields from space: New methods for routine observations. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Tuomi, L.; Vähä-Piikkiö, O.; Alari, V. Baltic Sea Wave Analysis and Forecasting Product BALTICSEA_ANALYSIS_FORECAST_WAV_003_010; Issue 1.0, CMEMS, 2017. [Google Scholar]
- Tuomi, L.; Vähä-Piikkiö, O.; Alari, V. CMEMS Baltic Monitoring and Forecasting Centre: High-resolution wave forecast in the seasonally ice-covered Baltic Sea. In Proceedings of the 8th International EuroGOOS Conference, Bergen, Norway, 3–5 October 2017. [Google Scholar]
- Von Schuckmann, K.; Le Traon, P.-Y.; Alvarez-Fanjul, E.; Axell, L.; Balmaseda, M.; Breivik, L.-A.; Brewin, R.J.; Bricaud, C.; Drevillon, M.; Drillet, Y.; et al. The Copernicus marine environment monitoring service ocean state report. J. Oper. Ocean. 2016, 9, s235–s320. [Google Scholar] [CrossRef]
- Group, T.W. The WAM model—A third generation ocean wave prediction model. J. Phys. Ocean. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. Oceans 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Monaldo, F.; Jackson, C.; Li, X.; Pichel, W.G. Preliminary evaluation of Sentinel-1A wind speed retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2638–2642. [Google Scholar] [CrossRef]
- Thompson, D.R.; Elfouhaily, T.M.; Chapron, B. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In Proceedings of the 1998 IEEE International on Geoscience and Remote Sensing Symposium (IGARSSS’98), Seattle, WA, USA, 6–10 July 1998; pp. 1671–1673. [Google Scholar]
- Horstmann, J.; Falchetti, S.; Wackerman, C.; Maresca, S.; Caruso, M.J.; Graber, H.C. Tropical cyclone winds retrieved from C-band cross-polarized synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2887–2898. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2 (No. NCAR/TN-468+ STR); National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div: Boulder, CO, USA, 2005. [Google Scholar]
- Haralick, R.M.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cyber. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Romeiser, R.; Graber, H.C.; Caruso, M.J.; Jensen, R.E.; Walker, D.T.; Cox, A.T. A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1320–1345. [Google Scholar] [CrossRef]
- Alari, V.; Staneva, J.; Breivik, Ø.; Bidlot, J.-R.; Mogensen, K.; Janssen, P. Response of water temperature to surface wave effects in the Baltic Sea: Simulations with the coupled NEMO-WAM model. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna Austria, 17–22 April 2016; p. 4363. [Google Scholar]
- European Maritime Safety Agency. EMSA CleanSeaNet First Generation Report; EMSA: Lisboa, Portugal, 2011. [Google Scholar]
- Ducet, N.; Le Traon, P.-Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res. Oceans 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Pascual, A.; Faugère, Y.; Larnicol, G.; Le Traon, P.Y. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Pujol, M.-I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Ray, R.D.; Beckley, B. Simultaneous ocean wave measurements by the Jason and Topex satellites, with buoy and model comparisons special issue: Jason-1 calibration/Validation. Mar. Geod. 2003, 26, 367–382. [Google Scholar] [CrossRef]
- Bouffard, J.; Vignudelli, S.; Cipollini, P.; Menard, Y. Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Bonnefond, P.; Mercier, F.; Dominh, K.; Toumazou, V. Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Glob. Plan. Chang. 2002, 34, 59–86. [Google Scholar] [CrossRef]
- Kudryavtseva, N.A.; Soomere, T. Validation of the multi-mission altimeter wave height data for the Baltic Sea region. arXiv, 2016; arXiv:1603.08698. [Google Scholar]
- Madsen, K.S.; Høyer, J.; Tscherning, C.C. Near-coastal satellite altimetry: Sea surface height variability in the North Sea–Baltic Sea area. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Vignudelli, S.; Cipollini, P.; Roblou, L.; Lyard, F.; Gasparini, G.; Manzella, G.; Astraldi, M. Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Høyer, J.L.; Nielsen, J. Satellite significant wave height observations in coastal and shelf seas. In Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry, Venice, Italy, 13–18 March 2006. [Google Scholar]
- Kudryavtseva, N.; Soomere, T. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. arXiv, 2017; arXiv:1705.01307. [Google Scholar]
No. (Origin) | Station | Lat (°N) | Lon (°E) | Sensor | Data Used |
---|---|---|---|---|---|
1 (FIN) | Selkämeri | 61.8001 | 20.2327 | Waverider | HS |
2 (SWE) | Finngrundet | 61.0000 | 18.6667 | Waverider | HS |
3 (FIN) | NBP | 59.2500 | 20.9968 | Waverider | HS |
4 (EST) | Vilsandi | 58.4889 | 21.6333 | Waverider | HS |
5 (SWE) | Knolls grund | 57.5167 | 17.6167 | Waverider | HS |
6 | NBP Extra | 58.7500 | 20.8271 | Virtual buoy | HS |
7 | Södra Östersjön | 55.9167 | 18.7833 | Virtual buoy | HS |
Sentinel-1 UTC | Relative Orbit no. | Images in Scene | Mean/Max HS per Scene | Mean/Max U10 per Scene | Collocations (Wave/Wind) |
---|---|---|---|---|---|
11 January 2015 16:19 | 29 | 6 | 2.4/7.5 | 9.0/18.7 | 3/11 |
22 April 2015 16:28 | 102 | 6 | 0.3/1.7 | 2.6/11.8 | 2/3 |
04 June 2015 05:04 | 22 | 9 | 0.9/2.8 | 5.3/14.0 | 4/32 |
11 June 2015 04:56 | 124 | 9 | 0.6/2.1 | 4.1/11.5 | 5/28 |
25 June 2015 04:56 | 124 | 8 | 0.8/1.8 | 5.1/13.8 | 5/27 |
28 June 2015 05:04 | 22 | 9 | 0.6/2.2 | 3.4/8.7 | 4/25 |
05 July 2015 04:56 | 124 | 9 | 0.7/2.5 | 4.7/12.4 | 4/22 |
28 July 2015 04:56 | 124 | 9 | 0.9/2.4 | 6.6/14.4 | 5/25 |
08 August 2015 05:04 | 22 | 9 | 1.7/2.9 | 10.8/16.0 | 4/31 |
08 September 2015 16:19 | 29 | 6 | 1.3/2.7 | 8.5/17.3 | 3/19 |
02 October 2015 05:04 | 22 | 9 | 1.8/3.6 | 11.6/19.1 | 4/32 |
02 October 2015 16:19 | 29 | 5 | 2.5/4.8 | 13.2/18.2 | 1/16 |
02 November 2015 04:56 | 124 | 9 | 1.6/2.4 | 10.7/17.1 | 5/32 |
09 August 2016 16:19 | 29 | 6 | 1.9/3.7 | 9.7/13.8 | 1/28 |
14 December 2016 04:56 | 124 | 7 | 1.4/2.6 | 8.6/13.9 | 2/26 |
15 | 116 | 52/357 |
Parameter | SAR vs. In SituWave Height | SAR vs. WAM Wave Height | SAR vs. In Situ Wind Speed | WAM vs. In Situ Wave Height |
---|---|---|---|---|
r | 0.88 | 0.81 (0.86) | 0.91 | 0.89 |
RMSE | 0.40 | 0.47 (0.47) | 1.43 | 0.39 |
SI | 0.37 | 0.42 (0.33) | 0.19 | 0.36 |
n | 52 | 52 (49314) | 357 | 52 |
Time UTC | Variable | Sentinel-1 | WAM |
---|---|---|---|
11 January 2015 16:19:22 High sea state | Mean (m) | 2.41 | 3.02 |
Maximum (m) | 7.47 | 6.97 | |
STD (m) | 1.51 | 1.48 | |
r | 0.91 | ||
RMSE (m) | 1.02 | ||
02 October 2015 05:04:47 Medium sea state | Mean (m) | 1.82 | 1.68 |
Maximum (m) | 3.62 | 2.65 | |
STD (m) | 1.32 | 0.57 | |
r | 0.51 | ||
RMSE (m) | 0.39 | ||
05 May 2015 04:56:28 Low sea state | Mean (m) | 0.57 | 0.33 |
Maximum (m) | 1.84 | 1.02 | |
STD (m) | 1.14 | 0.17 | |
r | 0.51 | ||
RMSE (m) | 0.41 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rikka, S.; Pleskachevsky, A.; Jacobsen, S.; Alari, V.; Uiboupin, R. Meteo-Marine Parameters from Sentinel-1 SAR Imagery: Towards Near Real-Time Services for the Baltic Sea. Remote Sens. 2018, 10, 757. https://doi.org/10.3390/rs10050757
Rikka S, Pleskachevsky A, Jacobsen S, Alari V, Uiboupin R. Meteo-Marine Parameters from Sentinel-1 SAR Imagery: Towards Near Real-Time Services for the Baltic Sea. Remote Sensing. 2018; 10(5):757. https://doi.org/10.3390/rs10050757
Chicago/Turabian StyleRikka, Sander, Andrey Pleskachevsky, Sven Jacobsen, Victor Alari, and Rivo Uiboupin. 2018. "Meteo-Marine Parameters from Sentinel-1 SAR Imagery: Towards Near Real-Time Services for the Baltic Sea" Remote Sensing 10, no. 5: 757. https://doi.org/10.3390/rs10050757
APA StyleRikka, S., Pleskachevsky, A., Jacobsen, S., Alari, V., & Uiboupin, R. (2018). Meteo-Marine Parameters from Sentinel-1 SAR Imagery: Towards Near Real-Time Services for the Baltic Sea. Remote Sensing, 10(5), 757. https://doi.org/10.3390/rs10050757