Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Satellite Model of Phytoplankton Size Classes
2.2.1. In Situ Chlorophyll-a Size-Fractionated Data
2.2.2. Parameterization of the Three-Component Model
2.2.3. Validation of the Model, Application to Satellite Data, and Match-Up between In Situ and Satellite Size-Fractionated Chlorophyll-a Estimates
2.3. Eddy Detection and Tracking
2.4. Size-Fractionated Chlorophyll-a Satellite Estimates in Mesoscale Eddies
3. Results
3.1. Satellite Model of Phytoplankton Size Classes
3.2. Spatio-Temporal Evolution of Phytoplankton Size Classes within Mesoscale Eddies
4. Discussion
4.1. Application of a Three-Component Abundance-Based Model to Retrieve Satellite Estimates of Phytoplankton Size Classes in the Region off Central-Southern Chile
4.2. Shifts on Phytoplankton Size Classes within Mesoscale Eddies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Removal of Chlorophyll-a Variability Other than the Mesoscale
Appendix B
Appendix C
Phytoplankton Size-Class Model | |
---|---|
PSC | Phytoplankton size classes |
C | Total chlorophyll-a concentration |
CM | Chlorophyll-a concentration by the micro-phytoplankton (>20 µm) |
CN | Chlorophyll-a concentration by the nano-phytoplankton (2–20 µm) |
CP | Chlorophyll-a concentration by the pico-phytoplankton (<2 µm) |
CNP | Chlorophyll-a concentration by the combined nano- and pico-phytoplankton |
CNPm | Asymptotic maximum value of CNP |
CPm | Asymptotic maximum value of CP |
DNP | Fraction contribution by the combined nano- and pico-phytoplankton to total chlorophyll-a as total tends to zero |
DP | Fraction contribution by the pico-phytoplankton to total chlorophyll-a as total tends to zero |
FM | Fraction of total chlorophyll-a for micro-phytoplankton |
FN | Fraction of total chlorophyll-a for nano-phytoplankton |
FP | Fraction of total chlorophyll-a for pico-phytoplankton |
FNP | Fraction of total chlorophyll-a for the combined nano- and pico-phytoplankton |
In situ methods to characterize the phytoplankton size-classes | |
SFF | Size-fractionated filtration |
aph | Phytoplankton absorption spectra |
HPLC | High performance liquid chromatography |
Statistical metrics | |
r | Pearson linear correlation coefficient |
RMS | Root mean square error |
MAE MdAE | Mean absolute error Median absolute error |
δ | Bias |
Regional abbreviations | |
EBCS | Eastern Boundary Current Systems |
CZ | Coastal zone |
CTZ | Coastal transition zone |
EA | Eastern Atlantic |
SCS | Southern China Sea |
AO | Atlantic Ocean |
NEA | North-East Atlantic |
NA | North Atlantic |
CSC | Central-Southern Chile |
Mesoscale features (eddies) | |
sC | Surface cyclone |
ssAC | Subsurface anticyclone |
sAC | Surface anticyclone |
ITE | Intrathermocline eddy |
R | Eddy radius |
r/R | A distance r from eddy center projected to eddy radius |
SLA | Sea level anomaly |
SSH | Sea surface height |
References
- Mann, K.H.; Lazier, J.R. Dynamics of Marine Ecosystem; Blakwell Sci.: Michigan, MI, USA, 1991; ISBN 0-86542-082-3. [Google Scholar]
- Claustre, H.; Kerhervé, P.; Marty, J.C.; Prieur, L. Phytoplankton photoadaptation related to some frontal physical processes. J. Mar. Syst. 1994, 5, 251–265. [Google Scholar] [CrossRef]
- Cotti-Rausch, B.E.; Lomas, M.W.; Lachenmyer, E.M.; Goldman, E.A.; Bell, D.W.; Goldberg, S.R. , Richardson, T.L. Mesoscale and sub-mesoscale variability in phytoplankton community composition in the Sargasso Sea. Deep-Sea Res. I 2016, 110, 106–122. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed]
- Garçon, V.C.; Oschlies, A.; Doney, S.C.; McGillicuddy, D.J., Jr.; Waniek, J. The role of mesoscale variability on plankton dynamics in the North Atlantic. Deep-Sea Res. II 2001, 48, 2199–2226. [Google Scholar] [CrossRef]
- McGillicuddy, D.J.; Anderson, L.A.; Bates, N.R.; Bibby, T.; Buesseler, K.O.; Carlson, C.A.; Davis, C.S.; Ewart, C.; Falkowski, P.G.; Goldthwait, S.A.; et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 2007, 316, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Chaigneau, A.; Eldin, G.; Dewitte, B. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog. Oceanogr. 2009, 83, 117–123. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; Zha, G. On the asymmetry of eddy-induced surface chlorophyll anomalies in the southeastern Pacific: The role of eddy-Ekman pumping. Prog. Oceanogr. 2016, 141, 202–211. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr.; Robinson, A.R.; Siegel, D.A.; Jannasch, H.W.; Johnson, R.; Dickey, T.D.; McNeil, J.; Michaels, A.F.; Knap, A.H. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 1998, 394, 263–266. [Google Scholar] [CrossRef]
- Sweeney, E.N.; McGillicuddy, D.J., Jr.; Buesseler, K.O. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS). Deep-Sea Res. II 2003, 50, 3017–3039. [Google Scholar] [CrossRef]
- Gaube, P.; McGillicuddy, D.J.; Chelton, D.B.; Behrenfeld, M.J.; Strutton, P.G. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 2014, 119, 8195–8220. [Google Scholar] [CrossRef]
- Wang, L.; Huang, B.; Chiang, K.P.; Liu, X.; Chen, B.; Xie, Y.; Xu, Y.; Hu, J.; Dai, M. Physical-biological coupling in the western South China Sea: The response of phytoplankton community to a mesoscale cyclonic eddy. PLoS ONE 2016, 11, e0153735. [Google Scholar] [CrossRef] [PubMed]
- Combes, V.; Hormazabal, S.; Di Lorenzo, E. Interannual variability of the subsurface eddy field in the Southeast Pacific. J. Geophys. Res. Oceans 2015, 120, 4907–4924. [Google Scholar] [CrossRef]
- Mourino-Carballido, B.; McGillicuddy, D.J. Mesoscale variability in the metabolic balance of the Sargasso Sea. Limnol. Oceanogr. 2006, 51, 2675–2689. [Google Scholar] [CrossRef]
- Hormazabal, S.; Combes, V.; Morales, C.E.; Correa-Ramirez, M.A.; Di Lorenzo, E.; Nuñez, S. Intrathermocline eddies in the coastal transition zone off central Chile (31–41 S). J. Geophys. Res. Oceans 2013, 118, 4811–4821. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. Oceans 2015, 120, 6008–6033. [Google Scholar] [CrossRef]
- Barceló-Llull, B.; Sangrà, P.; Pallàs-Sanz, E.; Barton, E.D.; Estrada-Allis, S.N.; Martínez-Marrero, A.; Marrero-Díaz, Á. Anatomy of a subtropical intrathermocline eddy. Deep-Sea Res. I 2017, 124, 126–139. [Google Scholar] [CrossRef]
- Siegel, D.A.; Peterson, P.; McGillicuddy, D.J.; Maritorena, S.; Nelson, N.B. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 2009, 1, 351–375. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.P.; Richards, K.J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II 2001, 48, 757–773. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 2013, 118, 6349–6370. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Fielding, S.; Crisp, N.; Allen, J.T.; Hartman, M.C.; Rabe, B.; Roe, H.S.J. Mesoscale subduction at the Almeria–Oran front: Part 2. Biophysical interactions. J. Mar. Syst. 2001, 30, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, A.; Tandon, A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 2006, 14, 241–256. [Google Scholar] [CrossRef]
- Nagai, T.; Tandon, A.; Gruber, N.; McWilliams, J.C. Biological and physical impacts of ageostrophic frontal circulations driven by confluent flow and vertical mixing. Dyn. Atmos. Oceans 2008, 45, 229–251. [Google Scholar] [CrossRef]
- Omand, M.M.; D’Asaro, E.A.; Lee, C.M.; Perry, M.J.; Briggs, N.; Cetinić, I.; Mahadevan, A. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 2015, 348, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Arístegui, J.; Barton, E.D.; Tett, P.; Montero, M.F.; García-Muñoz, M.; Basterretxea, G.; de Armas, D. Variability in plankton community structure, metabolism, and vertical carbon fluxes along an upwelling filament (Cape Juby, NW Africa). Prog. Oceanogr. 2004, 62, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Pelegrí, J.L.; Arístegui, J.; Cana, L.; González-Dávila, M.; Hernández-Guerra, A.; Hernández-León, S.; Santana-Casiano, M. Coupling between the open ocean and the coastal upwelling region off northwest Africa: Water recirculation and offshore pumping of organic matter. J. Mar. Syst. 2005, 54, 3–37. [Google Scholar] [CrossRef]
- Correa-Ramirez, M.A.; Hormazabal, S.; Yuras, G. Mesoscale eddies and high chlorophyll concentrations off central Chile (29–39 S). Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Gruber, N.; Lachkar, Z.; Frenzel, H.; Marchesiello, P.; Münnich, M.; McWilliams, J.C.; Plattner, G.K. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 2011, 4, 787–792. [Google Scholar] [CrossRef]
- Morales, C.E.; Hormazabal, S.; Correa-Ramirez, M.; Pizarro, O.; Silva, N.; Fernandez, C.; Torreblanca, M.L. Mesoscale variability and nutrient–phytoplankton distributions off central-southern Chile during the upwelling season: The influence of mesoscale eddies. Prog. Oceanogr. 2012, 104, 17–29. [Google Scholar] [CrossRef]
- Morales, C.E.; Anabalón, V.; Bento, J.P.; Hormazabal, S.; Cornejo, M.; Correa-Ramírez, M.A.; Silva, N. Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (∼36–37°S). J. Geophys. Res. Oceans 2017, 122, 8944–8965. [Google Scholar] [CrossRef]
- Moore II, T.S.; Matear, R.J.; Marra, J.; Clementson, L. Phytoplankton variability off the Western Australian Coast: Mesoscale eddies and their role in cross-shelf exchange. Deep-Sea Res. II 2007, 54, 943–960. [Google Scholar] [CrossRef]
- Karrasch, B.; Hoppe, H.G.; Ullrich, S.; Podewski, S. The role of mesoscale hydrography on microbial dynamics in the northeast Atlantic: Results of a spring bloom experiment. J. Mar. Res. 1996, 54, 99–122. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Lewis, M.R.; Cullen, J.J. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 2002, 47, 404–417. [Google Scholar] [CrossRef]
- Guidi, L.; Stemmann, L.; Jackson, G.A.; Ibanez, F.; Claustre, H.; Legendre, L.; Gorskya, G. Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis. Limnol. Oceanogr. 2009, 54, 1951–1963. [Google Scholar] [CrossRef]
- Finkel, Z.V.; Beardall, J.; Flynn, K.J.; Quigg, A.; Rees, T.A.V.; Raven, J.A. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J. Plankton Res. 2009, 32, 119–137. [Google Scholar] [CrossRef]
- Ward, B.A.; Dutkiewicz, S.; Jahn, O.; Follows, M.J. A size-structured food-web model for the global ocean. Limnol. Oceanogr. 2012, 57, 1877–1891. [Google Scholar] [CrossRef]
- Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 2015, 7, 241–264. [Google Scholar] [CrossRef] [PubMed]
- Brewin, R.J.; Sathyendranath, S.; Jackson, T.; Barlow, R.; Brotas, V.; Airs, R.; Lamont, T. Influence of light in the mixed-layer on the parameters of a three-component model of phytoplankton size class. Remote Sens. Environ. 2015, 168, 437–450. [Google Scholar] [CrossRef]
- Uitz, J.U.; Huot, Y.; Bruyant, F.; Babin, M.; Claustre, H. Relating phytoplankton photophysiological properties to community structure on large scales. Limnol. Oceanogr. 2008, 53, 614–630. [Google Scholar] [CrossRef]
- Brewin, R.J.; Sathyendranath, S.; Hirata, T.; Lavender, S.J.; Barciela, R.M.; Hardman-Mountford, N.J. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 2012, 221, 1472–1483. [Google Scholar] [CrossRef]
- Brewin, R.J.; Sathyendranath, S.; Tilstone, G.; Lange, P.K.; Platt, T. A multicomponent model of phytoplankton size structure. J. Geophys. Res. Oceans 2014, 119, 3478–3496. [Google Scholar] [CrossRef]
- Brewin, R.J.; Sathyendranath, S.; Lange, P.K.; Tilstone, G. Comparison of two methods to derive the size-structure of natural populations of phytoplankton. Deep-Sea Res. I 2014, 85, 72–79. [Google Scholar] [CrossRef]
- Ward, B.A. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PLoS ONE 2015, 10, e0135581. [Google Scholar] [CrossRef] [PubMed]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Brewin, R.J.; Ciavatta, S.; Sathyendranath, S.; Jackson, T.; Tilstone, G.; Curran, K.; Airs, R.L.; Cummings, D.; Brotas, V.; Organelli, E.; et al. Uncertainty in ocean-color estimates of chlorophyll for phytoplankton groups. Front. Mar. Sci. 2017, 4, 104. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Bricaud, A. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 2006, 4, 237–253. [Google Scholar] [CrossRef]
- Brotas, V.; Brewin, R.J.; Sá, C.; Brito, A.C.; Silva, A.; Mendes, C.R.; Diniz, T.; Kaufmann, M.; Tarran, G.; Groom, S.B.; et al. Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern Atlantic Ocean. Remote Sens. Environ. 2013, 134, 66–77. [Google Scholar] [CrossRef]
- Brito, A.C.; Sá, C.; Brotas, V.; Brewin, R.J.; Silva, T.; Vitorino, J.; Platt, T.; Sathyendranath, S. Effect of phytoplankton size classes on bio-optical properties of phytoplankton in the Western Iberian coast: Application of models. Remote Sens. Environ. 2015, 156, 537–550. [Google Scholar] [CrossRef]
- Lin, J.; Cao, W.; Wang, G.; Hu, S. Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea. Mar. Pollut. Bull. 2014, 83, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, M.M. Vórtices y filamentos observados en imágenes de satélite frente al área de surgencia de Talcahuano, Chile central. Investig. Pesq. 1992, 37, 55–66. [Google Scholar]
- Shaffer, G.; Hormazabal, S.; Pizarro, O.; Salinas, S. Seasonal and interannual variability of currents and temperature off central Chile. J. Geophys. Res. Oceans 1999, 104, 29951–29961. [Google Scholar] [CrossRef]
- Sobarzo, M.; Bravo, L.; Donoso, D.; Garcés-Vargas, J.; Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 2007, 75, 363–382. [Google Scholar] [CrossRef]
- Letelier, J.; Pizarro, O.; Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Correa-Ramirez, M.A.; Hormazabal, S.; Morales, C.E. Spatial patterns of annual and interannual surface chlorophyll-a variability in the Peru–Chile Current System. Prog. Oceanogr. 2012, 92, 8–17. [Google Scholar] [CrossRef]
- Morales, C.E.; Hormazabal, S.; Andrade, I.; Correa-Ramirez, M.A. Time-space variability of chlorophyll-a and associated physical variables within the region off Central-Southern Chile. Remote Sens. 2013, 5, 5550–5571. [Google Scholar] [CrossRef]
- Hormazabal, S.; Shaffer, G.; Leth, O. Coastal transition zone off Chile. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef]
- Morales, C.E.; Anabalón, V. Phytoplankton biomass and microbial abundances during the spring upwelling season in the coastal area off Concepción, central-southern Chile: Variability around a time series station. Prog. Oceanogr. 2012, 92, 81–91. [Google Scholar] [CrossRef]
- Fondo de Investigación Pesquera. Fase II: Levantamiento Oceanográfico para Elaborar la Línea Base de los Montes Submarinos Juan Fernández 5 (JF5), Juan Fernández 6 (JF6) y Monte O’Higgins; Informe final Proyecto FIP 2014-04-2; Chile, 2016; 355p, Available online: www.subpesca.cl/fipa/613/articles-92055_informe_final.pdf (accessed on 25 May 2018).
- Sathyendranath, S.; Cota, G.; Stuart, V.; Maass, H.; Platt, T. Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches. Int. J. Remote Sens. 2001, 22, 249–273. [Google Scholar] [CrossRef]
- Devred, E.; Sathyendranath, S.; Stuart, V.; Maass, H.; Ulloa, O.; Platt, T. A two-component model of phytoplankton absorption in the open ocean: Theory and applications. J. Geophys. Res. Oceans 2006, 111, C03011. [Google Scholar] [CrossRef]
- Vidussi, F.; Claustre, H.; Manca, B.B.; Luchetta, A.; Marty, J.C. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J. Geophys. Res. Oceans 2001, 106, 19939–19956. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap methods: Another look at the jackknife annals of statistics. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance metrics for the assessment of satellite data products: An ocean color case study. Opt. Express 2018, 26, 7404–7422. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.; Pascual, A.; McWilliams, J.C. A new sea surface height–based code for oceanic mesoscale eddy tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef]
- Kurian, J.; Colas, F.; Capet, X.; McWilliams, J.C.; Chelton, D.B. Eddy properties in the California current system. J. Geophys. Res. Oceans 2011, 116, C08027. [Google Scholar] [CrossRef]
- Penven, P.; Echevin, V.; Pasapera, J.; Colas, F.; Tam, J. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Capet, A.; Mason, E.; Rossi, V.; Troupin, C.; Faugere, Y.; Pujol, I.; Pascual, A. Implications of refined altimetry on estimates of mesoscale activity and eddy-driven offshore transport in the Eastern Boundary Upwelling Systems. Geophys. Res. Lett. 2014, 41, 7602–7610. [Google Scholar] [CrossRef]
- Campbell, J.W. The lognormal distribution as a model for bio-optical variability in the sea. J. Geophys. Res. Oceans 1995, 100, 13237–13254. [Google Scholar] [CrossRef]
- Dufois, F.; Hardman-Mountford, N.J.; Greenwood, J.; Richardson, A.J.; Feng, M.; Matear, R.J. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2016, 2, e1600282. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.; Akester, M.; Naranjo, L. Productivity and sustainable management of the Humboldt Current large marine ecosystem under climate change. Environ. Dev. 2016, 17, 126–144. [Google Scholar] [CrossRef]
- Lohrenz, S.; Weidemann, A.; Tuel, M. Phytoplankton spectral absorption as influenced by community size structure and pigment composition. J. Plankton Res. 2003, 25, 35–61. [Google Scholar] [CrossRef]
- Baird, M.; Timko, P.; Wu, L. The effect of packaging of chlorophyll within phytoplankton and light scattering in a coupled physical-biological ocean model. Mar. Freshw. Res. 2007, 58, 966–981. [Google Scholar] [CrossRef]
- Nair, A.; Sathyendranath, S.; Platt, T.; Morales, J.; Stuart, V.; Forget, M.H.; Devred, E.; Bouman, H. Remote sensing of phytoplankton functional types. Remote Sens. Environ. 2008, 112, 3366–3375. [Google Scholar] [CrossRef]
- Hopcroft, R.R.; Roff, J.C. Phytoplankton size fractions in a tropical neritic ecosystem near Kingston, Jamaica. J. Plankton Res. 1990, 12, 1069–1088. [Google Scholar] [CrossRef]
- Gin, K.Y.H.; Lin, X.; Zhang, S. Dynamics and size structure of phytoplankton in the coastal waters of Singapore. J. Plankton Res. 2000, 22, 1465–1484. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Platt, T. Spectral effects in bio-optical control on the ocean system. Oceanologia 2007, 49, 5–39. [Google Scholar]
- Anabalón, V.; Morales, C.E.; Escribano, R.; Varas, M.A. The contribution of nano-and micro-planktonic assemblages in the surface layer (0–30 m) under different hydrographic conditions in the upwelling area off Concepción, central Chile. Prog. Oceanogr. 2007, 75, 396–414. [Google Scholar] [CrossRef]
- González, H.E.; Menschel, E.; Aparicio, C.; Barría, C. Spatial and temporal variability of microplankton and detritus, and their export to the shelf sediments in the upwelling area off Concepción, Chile (∼36S), during 2002–2005. Prog. Oceanogr. 2007, 75, 435–451. [Google Scholar] [CrossRef]
- Böttjer, D.; Morales, C.E. Nanoplanktonic assemblages in the upwelling area off Concepción (∼36°S), central Chile: Abundance, biomass, and grazing potential during the annual cycle. Prog. Oceanogr. 2007, 75, 415–434. [Google Scholar] [CrossRef]
- Morales, C.E.; González, H.E.; Hormazabal, S.; Yuras, G.; Letelier, J.; Castro, L.R. The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepción, central Chile, during different oceanographic conditions. Prog. Oceanogr. 2007, 75, 452–469. [Google Scholar] [CrossRef]
- Anabalón, V.; Morales, C.E.; González, H.E.; Menschel, E.; Schneider, W.; Hormazabal, S.; Escribano, R. Micro-phytoplankton community structure in the coastal upwelling zone off Concepción (central Chile): Annual and inter-annual fluctuations in a highly dynamic environment. Prog. Oceanogr. 2016, 149, 174–188. [Google Scholar] [CrossRef]
- Llanillo, P.J.; Pelegrí, J.L.; Duarte, C.; Emelianov, M.; Gasser, M.; Gourrion, M.J.; Rodríguez-Santana, A. Meridional and zonal changes in water properties along the continental slope off central and northern Chile. Cienc. Mar. 2012, 38, 307–332. [Google Scholar] [CrossRef]
- Harrison, P.J.; Davis, C.O. The use of outdoor phytoplankton continuous cultures to analyze factors influencing species succession. J. Exp. Mar. Biol. Ecol. 1979, 41, 9–23. [Google Scholar] [CrossRef]
- Raven, J.A. Small is beautiful: The picophytoplankton. Funct. Ecol. 1998, 12, 503–513. [Google Scholar] [CrossRef]
- Paterson, H.; Knott, B.; Waite, A. Microzooplankton community structure and grazing on phytoplankton, in an eddy pair in the Indian Ocean off Western Australia. Deep-Sea Res. Part II 2007, 54, 1076–1093. [Google Scholar] [CrossRef]
Model Parameters | ||||||
---|---|---|---|---|---|---|
Area | Method | CNPm (mg m-3) | DNP | CPm (mg m-3) | DP | |
Brotas et al. [50] $ | EA | HPLC | 0.36 | 0.92 | 0.07 | 0.77 |
Lin et al. [52] | SCS | HPLC | 0.95 | 0.94 | 0.26 | 0.90 |
Brewin et al. [44] | AO | SFF | 2.78 (2.23–3.56) | --- | 0.66 (0.55–0.80) | --- |
Brewin et al. [41] | Global | HPLC | 0.77 (0.72–0.84) | 0.94 (0.93–0.95) | 0.13 (0.12–0.14) | 0.80 (0.78–0.82) |
Brito et al. [51] $ | NEA | aph, HPLC | 0.26–0.50 | 0.86 | 0.09 | 0.16 |
Ward [46] | Global | SFF | 0.79 | 0.97 | 0.16 | 0.84 |
Brewin et al. [48] | NA | HPLC, SFF | 0.82 (0.76–0.88) | 0.87 (0.86–0.89) | 0.13 (0.12–0.13) | 0.73 (0.71–0.76) |
This study | CSC | SFF | 2.12 (1.75–2.54) | 0.92 (0.88–0.96) | 0.19 (0.11–0.27) | 0.21 (0.16–0.33) |
Metrics | ||||
---|---|---|---|---|
r | RMS | MAE | ||
Micro | Brotas et al. [50] $ | --- | --- | 0.32 |
Lin et al. [52] | 0.99 | 0.46 | --- | |
Brewin et al. [41] | 0.91 | 0.34 | --- | |
Ward [46] | 0.83 | 0.47 | --- | |
Brewin et al. [48] | 0.93 | 0.32 | --- | |
This study | 0.88 | 0.41 | 0.30 (0.23) | |
Nano | Brotas et al. [50] $ | --- | --- | 0.19 |
Lin et al. [52] | 0.94 | 0.17 | --- | |
Brewin et al. [41] | 0.93 | 0.24 | --- | |
Ward [46] | 0.78 | 0.30 | --- | |
Brewin et al. [48] | 0.88 | 0.30 | --- | |
This study | 0.80 | 0.22 | 0.16 (0.11) | |
Pico | Brotas et al. [50] $ | --- | --- | 0.18 |
Lin et al. [52] | 0.89 | 0.39 | 0.04 | |
Brewin et al. [41] | 0.64 | 0.26 | --- | |
Ward [46] | 0.21 | 0.43 | --- | |
Brewin et al. [48] | 0.56 | 0.34 | --- | |
This study | 0.37 | 0.42 | 0.33 (0.29) | |
Nano + Pico | Brotas et al. [50] $ | --- | --- | 0.11 |
Lin et al. [52] | --- | --- | 0.03 | |
Brewin et al. [41] | 0.94 | 0.13 | --- | |
Ward [46] | 0.88 | 0.12 | --- | |
Brewin et al. [48] | 0.90 | 0.19 | --- | |
This study | 0.81 | 0.20 | 0.14 (0.10) |
Metrics | ||
---|---|---|
MdAE (t) | δ (t) | |
Micro | 1.69 | 1.07 |
Nano | 1.30 | 0.98 |
Pico | 1.97 | 1.36 |
Nano + Pico | 1.27 | 0.97 |
Brewin et al. [41] | Brewin et al. [48] | This Study | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
r | RMS | r | RMS | r | RMS | MdAE | δ | MdAE (t) | δ (t) | |
Total | 0.88 | 0.25 | 0.86 | 0.29 | 0.87 | 0.22 | 0.15 | −0.12 | 1.42 | 0.73 |
Micro | 0.86 | 0.41 | 0.85 | 0.45 | 0.64 | 0.50 | 0.36 | −0.01 | 2.34 | 0.92 |
Nano | 0.80 | 0.38 | 0.76 | 0.43 | 0.79 | 0.22 | 0.17 | −0.09 | 1.49 | 0.79 |
Pico | 0.57 | 0.28 | 0.49 | 0.35 | 0.72 | 0.28 | 0.18 | 0.06 | 1.54 | 1.14 |
Nano + Pico | 0.79 | 0.27 | 0.76 | 0.30 | 0.76 | 0.24 | 0.16 | −0.08 | 1.45 | 0.77 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corredor-Acosta, A.; Morales, C.E.; Brewin, R.J.W.; Auger, P.-A.; Pizarro, O.; Hormazabal, S.; Anabalón, V. Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model. Remote Sens. 2018, 10, 834. https://doi.org/10.3390/rs10060834
Corredor-Acosta A, Morales CE, Brewin RJW, Auger P-A, Pizarro O, Hormazabal S, Anabalón V. Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model. Remote Sensing. 2018; 10(6):834. https://doi.org/10.3390/rs10060834
Chicago/Turabian StyleCorredor-Acosta, Andrea, Carmen E. Morales, Robert J. W. Brewin, Pierre-Amaël Auger, Oscar Pizarro, Samuel Hormazabal, and Valeria Anabalón. 2018. "Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model" Remote Sensing 10, no. 6: 834. https://doi.org/10.3390/rs10060834
APA StyleCorredor-Acosta, A., Morales, C. E., Brewin, R. J. W., Auger, P. -A., Pizarro, O., Hormazabal, S., & Anabalón, V. (2018). Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model. Remote Sensing, 10(6), 834. https://doi.org/10.3390/rs10060834