Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe
Abstract
:1. Introduction
- To validate (for AOT and WVP) and intercompare (for all L2A parameters) operational Sentinel-2 L2A products generated from the European Space Agency (ESA-L2A) with products generated offline using the SEN2COR tool provided by ESA (S2C-L2A) using identical input Level 1B products and default settings.
- To intercompare geophysical products generated using the European Space Agency Sentinel Level 2 Simplified L2 Product Prototype Processor [26] as well as widely used equations for spectral vegetation indices using, alternatively, ESA-L2A and S2C-L2A products as input.
2. Study Sites and Materials
3. Methodology
4. Results
4.1. Validation of AOT and WVP Maps
4.2. Intercomparison of SLC, AOT and WVP Maps
4.3. Intercomparison of BOA Reflectances
4.4. Comparison of Vegetation Indices and Biophysical Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 20, 25–36. [Google Scholar] [CrossRef]
- Martimort, P.; Berger, M.; Carnicero, B.; Del Bello, U.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: The optical high-resolution mission for GMES operational services. ESA Bull. 2007, 131, 18–23. [Google Scholar]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/ (accessed on 1 December 2017).
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef]
- Mueller-Wilm, U.; Devignot, O.; Pessiot, L. Sen2Cor Configuration and User Manual. S2-PDGS-MPC-L2A-SUM-V2.4. 2017. Available online: http://step.esa.int/thirdparties/sen2cor/2.4.0/ Sen2Cor_240_Documenation_PDF/S2-PDGS-MPC-L2A-SUM-V2.4.0.pdf (accessed on 1 December 2017).
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; ESA SP-740. August 2016. [Google Scholar]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Verhegghen, A.; Eva, H.; Ceccherini, G.; Achard, F.; Gond, V.; Gourlet-Fleury, S.; Cerutti, P.O. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests. Remote Sens. 2016, 8, 986. [Google Scholar] [CrossRef]
- Van del Werff, H.; Van der Meer, F. Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing. Remote Sens. 2016, 8, 883. [Google Scholar] [CrossRef]
- Borràs, J.; Delegido, J.; Pezzola, A.; Pereira, M.; Morassi, G.; Camps-Valls, G. Land use classification from Sentinel-2 imagery. Span. J. Remote Sens. 2017, 48, 55–66. [Google Scholar]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping LakeWater Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.A. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef] [Green Version]
- Sentinel-2 L2A Products Available on Sentinel Hub. Available online: http://www.sentinel-hub.com/blog/sentinel-2-l2a-products-available-sentinel-hub/ (accessed on 1 December 2017).
- Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Debaecker, V.; Louis, J. Early Validation of Sentinel-2 L2A Processor and Products. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; ESA SP-740. August 2016. [Google Scholar]
- Aerosol Robotic Network. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 1 December 2017).
- Clevers, J.G.P.W.; Kooistra, L.; Van den Brande, M.M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405–420. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Taberner, M.; Pinty, B.; Govaerts, Y.; Liang, S.; Verstraete, M.M.; Gobron, N.; Widlowski, J.L. Comparison of MISR and MODIS land surface albedos: Methodology. J. Geophys. Res. 2010, 115, D05101. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. 2008, 113, G02028. [Google Scholar] [CrossRef]
- Meroni, M.; Atzberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation of agreement between space remote sensing SPOT-VEGETATION fAPAR time series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1951–1962. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products. Version 1.1. Date Issued: 02.05.2016. Available online: step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 1 December 2017).
- Ji, L.; Gallo, K. An agreement coefficient for image comparison. Photogramm. Eng. Remote Sens. 2006, 72, 823–833. [Google Scholar] [CrossRef]
- Riemann, R.; Wilson, B.; Tyler, B.; Lister, A.; Parks, S. An effective assessment protocol for continuous geospatial data sets. Remote Sens. Environ. 2010, 114, 2337–2352. [Google Scholar] [CrossRef]
- Fernandes, R.; Plummer, S.; Nightingale, J. Global Leaf Area Index Product Validation Good Practices; Committee of Earth Observing Systems Working Group on Calibration and Validation, Land Product Validation Sub-Group: Geneva, Switzerland, 2014; p. 75. [Google Scholar]
- JCGM. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. JCGM-100. 2008. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 1 May 2017).
- ESA Senitenl-2 Team. GMES Sentinel-2 Mission Requirements Document. EOP-SM/1163/MR-dr. Date Issued: 30/01/2017. Available online: https://earth.esa.int/pub/ESA_DOC/GMES_Sentinel2_MRD_issue_2.0_update.pdf (accessed on 1 December 2017).
- Nyeki, S.; Wehrli, C.; Gröbner, J.; Kouremeti, N.; Wacker, S.; Labuschagne, C.; Mbatha, N.; Brunke, E. The GAW-PFR aerosol optical depth network: The 2008–2013 time series at Cape Point Station, South Africa. J. Geophys. Res. Atmos. 2015, 120, 507–508. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; Whiteman, D.N.; Smirnov, A.; Lyamani, H.; Holben, B.N.; Pinker, R.; Andrade, M.; Alados-Arboledas, L. Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes at ARM sites. J. Geophys. Res. Atmos. 2014, 119, 9596–9613. [Google Scholar] [CrossRef] [Green Version]
- Richter, R.; Louis, J.; Müller-Wilm, U. Sentinel-2 MSI—Level 2A Products Algorithm Theoretical Basis Document; S2PAD-ATBD-0001; 2012; Issue 2.0, Telespazio VEGA Deutschland GmbH: Darmstadt, Germany, 2012. [Google Scholar]
- Miura, T.; Huete, A.R.; Yoshioka, H.; Holben, B.N. An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sens. Environ. 2001, 78, 284–298. [Google Scholar] [CrossRef]
Site | Sentinel-2 Granule ID | Acquisition Date (Day of Year) | Local Overpass Time (hh:mm) |
---|---|---|---|
Barrax | T30SWJ | 18 June 2017 (169) | 10:56 |
Barrax | T30SWJ | 28 July 2017 (208) | 10:56 |
Barrax | T30SWJ | 17 August 2017 (227) | 10:56 |
Barrax | T30SWJ | 16 October 2017 (286) | 11:00 |
Barrax | T30SWJ | 26 October 2017 (295) | 11:01 |
La Crau | T31TGJ | 19 June 2017 (164) | 10:30 |
La Crau | T31TGJ | 18 August 2017 (223) | 10:30 |
La Crau | T31TGJ | 7 September 2017 (242) | 10:30 |
La Crau | T31TGJ | 7 October 2017 (271) | 10:30 |
La Crau | T31TGJ | 17 October 2017 (280) | 10:30 |
Harth | T32TLT | 10 April 2017 (088) | 10:30 |
Harth | T32TLT | 30 April 2017 (107) | 10:30 |
Harth | T32TLT | 10 May 2017 (116) | 10:30 |
Harth | T32TLT | 19 June 2017 (155) | 10:30 |
Harth | T32TLT | 18 August 2017 (214) | 10:30 |
Sentinel-2 Bands | Central Wavelength (µm) | Resolution (m) |
---|---|---|
Band 2—Blue | 0.490 | 10 |
Band 3—Green | 0.560 | 10 |
Band 4—Red | 0.665 | 10 |
Band 5—Vegetation Red Edge (VRE-1) | 0.705 | 20 |
Band 6—Vegetation Red Edge (VRE-2) | 0.740 | 20 |
Band 7—Vegetation Red Edge (VRE-3) | 0.783 | 20 |
Band 8A—NIR | 0.865 | 20 |
Band 11—SWIR (SWIR-1) | 1.610 | 20 |
Band 12—SWIR (SWIR-2) | 2.190 | 20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djamai, N.; Fernandes, R. Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe. Remote Sens. 2018, 10, 926. https://doi.org/10.3390/rs10060926
Djamai N, Fernandes R. Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe. Remote Sensing. 2018; 10(6):926. https://doi.org/10.3390/rs10060926
Chicago/Turabian StyleDjamai, Najib, and Richard Fernandes. 2018. "Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe" Remote Sensing 10, no. 6: 926. https://doi.org/10.3390/rs10060926
APA StyleDjamai, N., & Fernandes, R. (2018). Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe. Remote Sensing, 10(6), 926. https://doi.org/10.3390/rs10060926