Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling
Abstract
:1. Introduction
2. Observation and Method
2.1. Lidar Measurement
2.2. Aerosol Component Retrieval from Lidar Measurements
2.3. Mass Concentration Retrieval from Lidar Measurements
2.4. In-Situ Sampling Measurement (ACSA-12, MAAP, and Denuder-Filter Pack Method)
3. Results
3.1. Seasonal Variation of Optical Properties and In-Situ Aerosol Measurements
3.2. Vertical Distribution of Four Aerosol Components
3.3. Comparison of Aerosol Mass Concentration
3.3.1. Black Carbon
3.3.2. Sea Salt
3.3.3. PM2.5 and PM10
4. Conclusions
- (1)
- We summarized seasonal means of aerosol optical properties, in-situ aerosol mass concentrations, and meteorological parameters. The seasonal variation suggests that mixing of anthropogenic and natural aerosols (SS and DS), as well as hygroscopic growth of water-soluble aerosols may be key processes to produce aerosol seasonal variation in Fukuoka, in the downwind region of Japan.
- (2)
- We found overestimation of lidar-derived BC mass concentration using the pure BC model; however, the use of the internal mixture model of BC with water-soluble substances (Core-Gray-Shell (CGS) model) drastically reduced BC overestimation. This suggests that using the CGS model is essential in estimating BC mass concentration from lidar measurements, at least in this Asian region.
- (3)
- Systematic overestimation of BC mass concentration was found during summer, even though the CGS model was applied. The observations from in-situ and MMRL measurements implied misclassification of AP particles as CGS particles in the lidar retrieval. We found that this misclassification was at least partially caused by underestimation of model-reanalysis RH data used in the retrieval. Thus, use of more reliable vertical data of RH (e.g., sonde-derived or lidar-derived RH data) will lead to better estimation of BC (and AP).
- (4)
- The time variation of lidar-derived mass concentration of SS was generally consistent with in-situ aerosol measurements. However, we found some overestimation of SS mass concentration. In-situ and MMRL measurements suggested internal mixing between DS and nitrate during all dust events in 2015; this internal mixing may cause misclassification of DS as SS, and thus lead to overestimation of SS. The internal mixture of DS and water-soluble substances (e.g., nitrate and sulfate), as well as the mixture of BC and water-soluble substances will lead to better estimation of aerosol components.
- (5)
- Time variations for lidar-derived PM2.5, PM10, and PMc were in good agreement with in-situ measurement. On the other hand, lidar sometimes overestimated PM2.5 and PM10 during a dust event, although the lidar-derived PMc agree well with in-situ measured PMc. This implies that the overestimation of PM10 is caused by the overestimation of PM2.5, which is mainly affected by overestimation of fine-mode DS.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Zhang, X.C.; Gong, S.L.; Zhang, Y.M.; Sun, J.Y. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, Z.; Liu, J.; Hu, B.; Wen, T.; Tang, G.; Zhang, J.; Wu, F.; Ji, D.; Wang, L.; et al. Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing-Tianjin-Hebei region, China. Atmos. Chem. Phys. 2017, 17, 12941–12962. [Google Scholar] [CrossRef]
- Zhao, B.; Liou, K.N.; Gu, Y.; Li, Q.; Jiang, J.H.; Su, H.; He, C.; Tseng, H.L.R.; Wang, S.; Liu, R.; et al. Enhanced PM2.5 Pollution in China due to aerosol-cloud interactions. Sci. Rep. 2017, 7, 4453. [Google Scholar] [CrossRef] [PubMed]
- IPCC. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaugham, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Vaugham, M.A.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol classification from airbore HSRL and comparisons with the CALIPSO vertical feature mask. J. Atmos. Meas. Technol. 2013, 6, 1397–1412. [Google Scholar] [CrossRef]
- Ansmann, A.; Riebesell, M.; Wandinger, U.; Weitkamp, C.; Michaelis, W. Combined Raman elastic-backscatter LIDAR for vertical profiles of moisture, particle extinction, backscatter and LIDAR ratio. Appl. Phys. 1992, 55, 18–28. [Google Scholar] [CrossRef]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. 2007, 112, D16202. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements–methodology and examples. Atmos. Meas. Technol. 2012, 5, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, N.; Uno, I.; Nishikawa, M.; Shimizu, A.; Matsui, I.; Dong, X.; Chen, Y.; Quan, H. Record heavy Asian dust in Beijing in 2002: Observations and model analysis of recent events. Geophys. Res. Lett. 2003, 30, 1640. [Google Scholar] [CrossRef]
- Kanatani, K.T.; Ito, I.; Al-Delaimy, W.K.; Adachi, Y.; Mathews, W.C.; Ramsdell, J.W. Desert dust exposure is associated with increased risk of asthma hospi-talization in children. Am. J. Respir. Crit. Care Med. 2010, 182, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Onishi, K.; Kurosaki, Y.; Otani, S.; Yoshida, A.; Sugimoto, N. Atmospheric transport route determines components of Asian dust and health effect in Japan. Atmos. Environ. 2012, 49, 94–102. [Google Scholar] [CrossRef]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Mori, I.; Nishikawa, M.; Kido, M. Relationship between Lidar-derived Dust Extinction Coeffcients and Mass Concentrations in Japan. Sola 2011, 7A, 1–4. [Google Scholar] [CrossRef]
- Kaneyasu, N.; Sugimoto, N.; Shimizu, A.; Yamamoto, S.; Kawamoto, K. Comparison of Lidar-derived dust extinction coefficients and the mass concentrations of surface aerosol. J. Jpn. Soc. Atmos. Environ. 2012, 47, 285–291. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groβ, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Tesche, M.; Müller, D.; Gross, S.; Ansmann, A.; Althausen, D.; Freudenthaler, V.; Weinzierl, B.; Veira, A.; Petzold, A. Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus B 2011, 63, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Tatarov, B.; Okamoto, H. Algorithm to retrieve aerosol optical properties from high-spectral-resolution lidar and polarization Mie-scattering lidar measurements. IEEEE Trans. Geosci. Remote Sens. 2008, 46, 4094–4103. [Google Scholar] [CrossRef]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Hara, Y.; Uno, I.; Yasunaga, K.; Kudo, R.; Kim, S.W. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distribution of aerosol components. J. Quant. Spectr. Radiat. Transf. 2017, 188, 79–93. [Google Scholar] [CrossRef]
- Hara, Y.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Pan, X.; Kobayashi, H.; Osada, K.; Uno, I. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system. J. Quant. Spectr. Radiat. Transf. 2017, 188, 20–27. [Google Scholar] [CrossRef]
- Pan, X.L.; Uno, I.; Hara, Y.; Kuribayashi, M.; Kobayashi, H.; Sugimoto, N.; Yamamoto, S.; Shimohara, T.; Wang, Z. Observation of the simultaneous transport of Asian mineral dust aerosols with anthropogenic pollutants using a POPC during a long-lasting dust event in late spring 2014. Geophys. Res. Lett. 2015, 42, 1593–1598. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.L.; Uno, I.; Hara, Y.; Osada, K.; Yamamoto, S.; Wang, Z.; Sugimoto, N.; Kobayashi, H.; Wang, Z.F. Polarization properties of aerosol particles over western Japan: Classification, seasonal variation, and implications for air quality. Atmos. Chem. Phys. 2016, 16, 9863–9873. [Google Scholar] [CrossRef]
- Itahashi, S.; Hayami, H.; Uno, I.; Pan, X.L.; Uematsu, M. Importance of coarse-mode nitrate produced via sea salt as atmospheric input to east Asian oceans. Geophys. Res. Lett. 2016, 43, 5483–5491. [Google Scholar] [CrossRef]
- Itahashi, S.; Hayami, H.; Yumimoto, K.; Uno, I. Chinese province-scale source apportionments for sulfate aerosol in 2005 evaluated by the tagged tracer method. Environ. Pollut. 2017, 220, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Osada, K.; Kamikuchi, T.; Yamamoto, S.; Kuwahara, S.; Pan, X.; Hara, Y.; Uno, I. Comparison of ionic concentrations on size-segregated atmospheric aerosol particl based on a denuer-filter method and a Continuous Dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12). Earozoru Kenkyu 2016, 31, 203–209. [Google Scholar] [CrossRef]
- Uno, I.; Osada, K.; Yumimoto, K.; Wang, Z.; Itahashi, S.; Pan, X.; Hara, Y.; Kanaya, Y.; Yamamoto, S.; Fairlie, T.D. Seasonal variation of fine- and coarse-mode nitrates and related aerosols over East Asia: Synergetic observations and chemical transport model analysis. Atmos. Chem. Phys. 2017, 17, 14181–14197. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111, D11208. [Google Scholar] [CrossRef]
- D’Almeida, G.; Koepke, P.; Shettle, E.P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics; A Deepak Pub.: Hampton, VA, USA, 1991; p. 561, ISBN-13 978-0937-194225. [Google Scholar]
- Kahnert, M.; Nousiainen, T.; Lindqvist, H. Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates. Opt. Express 2013, 21, 7974–7993. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.A.; Malm, W.C.; Kreidenweis, S.M. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 1999, 104, 15941–15954. [Google Scholar] [CrossRef] [Green Version]
- Garnett, J.C.M. Colours in meatal glasses and in metallic films. Philos. Trans. Soc. 1904, 203, 385–420. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Kondo, Y.; Moteki, N.; Fast, J.D.; Zaveri, R.A. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impac. J. Geophys. Res. 2013, 118, 2304–2326. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Kimoto, H.; Ueda, A.; Tsujimoto, K.; Mitani, Y.; Toyasaki, Y.; Kimoto, T. Development of continuous dichotomous aerosol chemical speciation analyzer. Clean Technol. 2013, 23, 49–52. (In Japanese) [Google Scholar]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E.T. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 1986, 91, 6646–6658. [Google Scholar] [CrossRef]
- Kanaya, Y.; Taketani, F.; Komazaki, Y.; Liu, X.; Kondo, Y.; Sahu, L.K.; Irie, H.; Takashima, H. Comparison of Black carbon mass concentrations observed by Multi-Angle Absorption Photometer (MAAP) and Continuous Soot0Monitoring System (COSMOS) on Fukue Island and in Tokyo, Japan. Atmos. Meas. Technol. 2012, 47, 1–10. [Google Scholar] [CrossRef]
- Oshima, N.; Koike, M.; Zhang, Y.; Kondo, Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. J. Geophys. Res. 2009, 114, D18202. [Google Scholar] [CrossRef]
- Ackermann, J. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Ocean. Technol. 1998, 15, 1043–1050. [Google Scholar] [CrossRef]
- Bellenger, H.; Yoneyama, K.; Katsumata, K.; Nishizawa, T.; Yasunaga, K.; Shirooka, R. Observation of moisture tendencies related to shallow convection. J. Atmos. Sci. 2015, 72, 641–659. [Google Scholar] [CrossRef]
- Sugimoto, N.; Nishizawa, T.; Shimizu, A.; Matsui, I.; Kobayashi, H. Detection of internally mixed Asian dust wit air pollution aerosols using a polarization optical particle counter and a polarization-sensitive two-wavelength lidar. J. Quant. Spectr. Radiat. Transf. 2014, 150, 107–113. [Google Scholar] [CrossRef]
- Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; et al. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution. Sci. Rep. 2016, 7, 335. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, A.J.; Berker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef]
- Hayasaka, T.; Satake, S.; Shimizu, A.; Sugimoto, N.; Matsui, I.; Aoki, K.; Muraji, Y. Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds-East Asia Regional Experiment 2005. J. Geophys. Res. 2007, 112, D22S35. [Google Scholar] [CrossRef]
AP | SS | DS | Pure BC | CGS | |
---|---|---|---|---|---|
Mode radius [μm] | 0.10 | 1.67 | 2.00 | 0.05 | 0.11 |
Standard deviation | 1.6 | 2.2 | 2.0 | 2.1 | 1.6 |
S532 [sr] | 53 | 19 | 47 | 98 | 101 |
CR532/1064 | 2.9 | 1.5 | 1.0 | 4.2 | 1.8 |
δ532 [%] | 2 | 2 | 30 | 2 | 2 |
α532/PM2.5 [m2/g] | 4.3 | 0.6 | 0.2 | 9.8 | 2.7 |
α532/PM10 [m2/g] | 0 | 1.7 | 0.5 | 0 | 0 |
Winter (DJF) | Spring (MAM) | Summer (JJA) | Autumn (SON) | |
---|---|---|---|---|
α355 [/km] | 0.27 ± 0.17 2 | 0.26 ± 0.14 | 0.31 ± 0.20 | 0.22 ± 0.12 |
α532 [/km] | 0.17 ± 0.12 | 0.16 ± 0.10 | 0.22 ± 0.20 | 0.14 ± 0.12 |
S355 [sr] | 53 ± 20 | 56 ± 21 | 56 ± 18 | 52 ± 19 |
S532 [sr] | 50 ± 18 | 54 ± 18 | 53 ± 19 | 52 ± 17 |
δ355 [%] | 7 ± 4 | 7 ± 4 | 4 ± 2 | 6 ± 2 |
δ532 [%] | 10 ± 7 | 7 ± 4 | 2 ± 1 | 9 ± 5 |
CR355/532 | 1.7 ± 0.72 | 1.5 ± 0.7 | 1.5 ± 0.48 | 1.7 ± 0.6 |
CR532/1064 | 1.5 ± 0.8 | 1.6 ± 1.0 | 1.8 ± 1.1 | 1.5 ± 0.8 |
Num. of prof.355 1 | 813 | 630 | 580 | 744 |
Num. of prof.532 | 719 | 584 | 583 | 728 |
PM2.5 [μg/m3] | 21.0 ± 13.7 | 20.4 ± 11.9 | 15.0 ± 10.5 | 18.5 ± 9.8 |
PMc 3 [μg/m3] | 13.7 ± 13.3 | 15.4 ± 13.7 | 7.4 ± 6.1 | 9.2 ± 4.9 |
fSO42− 4 [μg/m3] | 4.6 ± 3.5 (22% 5) | 5.9 ± 3.4 (29%) | 5.3 ± 3.9 (35%) | 4.6 ± 2.9 (25%) |
fNO3− [μg/m3] | 2.6 ± 2.2 (12% 5) | 1.7 ± 1.8 (8%) | 0.7 ± 0.5 (4%) | 1.2 ± 0.8 (7%) |
fWSOC [μg/m3] | 1.5 ± 1.3 (7% 5) | 1.2 ± 0.9 (6%) | 0.6 ± 0.8 (4%) | 0.8 ± 0.9 (4%) |
BC [μg/m3] | 1.1 ± 0.7 (5% 5) | 1.0 ± 0.6 (5%) | 0.9 ± 0.5 (6%) | 1.3 ± 0.9 (7%) |
cSO42− [μg/m3] | 0.8 ± 0.5 (6% 6) | 1.1 ± 0.5 (1%) | 1.2 ± 1.0 (16%) | 0.6 ± 0.5 (7%) |
cNO3− [μg/m3] | 1.3 ± 0.2 (9% 6) | 1.2 ± 0.2 (8%) | 0.7 ± 0.1 (9%) | 1.0 ± 0.1 (10%) |
cSS [μg/m3] | 4.3 ± 2.0 (31% 6) | 3.1 ± 2.2 (20%) | 1.7 ± 1.1 (22%) | 3.6 ± 3.5 (39%) |
RH [%] | 58.5 | 56.3 | 67.8 | 56.3 |
Temp. [°C] | 7.7 | 17.1 | 26.6 | 19.6 |
Winter (DJF) | Spring (MAM) | Summer (JJA) | Autumn (SON) | |
---|---|---|---|---|
colPM2.5 (Hm) | 45.8 (1.5) | 46.9 (1.62) | 34.1 (1.5) | 36.6 (1.38) |
colPMc (Hm) | 24.4 (1.5) | 23.1 (1.62) | 14.6 (1.5) | 19.0 (1.38) |
colAP (Hm) | 5.5 (1.26) | 9.2 (1.38) | 9.9 (1.5) | 5.4 (1.38) |
colBC (Hm) | 2.1 (1.38) | 2.4 (1.38) | 2.7 (1.38) | 2.0 (1.26) |
colSS (Hm) | 11.8 (1.26) | 11.7 (1.38) | 8.4 (1.38) | 11.1 (1.14) |
colDS (Hm) | 50.8 (1.74) | 46.9 (1.62) | 26.2 (1.5) | 35.37 (1.38) |
PM2.5 | 23.9 | 22.9 | 16.4 | 21.3 |
PMc | 13.1 | 11.1 | 7.8 | 11 |
AP | 3.6 | 4.6 | 3.4 | 3.5 |
BC | 1.2 | 1.5 | 1.6 | 1.2 |
SS | 8.7 | 7.5 | 5 | 8.9 |
DS | 24.3 | 21 | 13.3 | 19.4 |
Date (JST) | α355 [/km] | α532 [/km] | S355 [sr] | S532 [sr] | δ355 [%] | δ532 [%] | CR 355/532 | CR 532/1064 | AP [μg/m3] | BC [μg/m3] | DS [μg/m3] | SS [μg/m3] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B1: 8/5 18:00–8/6 6:00 | 0.84 | 0.47 | 82 | 73.2 | 1 | 3 | 1.4 | 2.4 | 29.1 | 7.1 | 34.1 | 5.7 |
B2: 8/9 19:00–8/10 4 :00 | 0.44 | 0.34 | 58.7 | 59.0 | 1 | 2 | 0.9 | 1.7 | 29.1 | 5.1 | 18.6 | 22. |
D2: 2/23 18:00–2/24 6:00 | 0.30 | 0.25 | 43.5 | 37.0 | 13 | 14 | 1.1 | 1.7 | 19.8 | 0.4 | 151.7 | 35.0 |
D4-1: 4/15 19:00–4/16 5:00 | 0.56 | 0.22 | 80.1 | 36.9 | 5 | 4 | 1.7 | 1.2 | 7.4 | 2.0 | 41.5 | 43.8 |
D4-2: 4/16 21:00–4/17 5:00 | 0.36 | 0.14 | 75.0 | 21.2 | 12 | 8 | 0.7 | 1.6 | 2.2 | 0.6 | 63.4 | 45.0 |
D5-1: 4/23 19:00–4/24 5:00 | 0.38 | 0.25 | 62.5 | 56.6 | 7 | 5 | 1.1 | 1.1 | 2.7 | 4.1 | 32.8 | 42.5 |
D5-2: 4/25 19:00–4/26 5:00 | 0.25 | 0.12 | 53.2 | 47.5 | 7 | 7 | 1.4 | 1.2 | - | 1.9 | 35.0 | 28.1 |
Date (JST) | Temp [°C] | RH 1 [%] | RH_cor 2 [%] | PM2.5 [μg/m3] | PMc [μg/m3] | fSO42− 4 [μg/m3] | fNO3− [μg/m3] | cSO42− 5 [μg/m3] | cNO3− [μg/m3] | BC [μg/m3] | SS [μg/m3] |
---|---|---|---|---|---|---|---|---|---|---|---|
B1: 8/5 18:00–8/6 6:00 | 28.9 (30.1) | 73.0 (77)c | 66.4 (68) 3 | 32.3 | 15.3 | 14.8 | 0.43 | 2.2 | 0.5 | 1.1 | - |
B2: 8/9 19:00–8/10 4 :00 | 28.1 (29.6) | 76.1 (81) | 64.1 (73) | 25.5 | 11.9 | 9.8 | 0.6 | 1.5 | 0.7 | 0.7 | 1.7 |
D2: 2/23 18:00–2/24 6:00 | 7.8 (10.6) | 75.2 (87) | 57.4 (68) | 33.1 | 87.9 | 4.8 | 3.3 | 1.8 | 4.1 | 2.3 | 5.8 |
D4-1: 4/15 19:00–4/16 5:00 | 15.2 (16.4) | 56.8 (72) | 54.6 (55) | 44.5 | 38.4 | 14.4 | 5.0 | 1.9 | 4.5 | 1.9 | 4.1 |
D4-2: 4/16 21:00–4/17 5:00 | 15.0 (18.3) | 60.3 (81) | 51.7 (77) | 29.3 | 53.3 | 7.5 | 2.2 | 1.9 | 3.5 | 0.9 | 8.1 |
D5-1: 4/23 19:00–4/24 5:00 | 14.3 (16.7) | 79.7 (89) | 33.7 (39) | 40.7 | 34.5 | 9.5 | 5.8 | 1.0 | 4.1 | 2.4 | 2.0 |
D5-2: 4/25 19:00–4/26 5:00 | 14.0 (16.4) | 64.8 (77) | 21.7 (24) | 37.0 | 30.8 | 12.0 | 3.2 | 1.4 | 3.0 | 2.0 | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, Y.; Nishizawa, T.; Sugimoto, N.; Osada, K.; Yumimoto, K.; Uno, I.; Kudo, R.; Ishimoto, H. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sens. 2018, 10, 937. https://doi.org/10.3390/rs10060937
Hara Y, Nishizawa T, Sugimoto N, Osada K, Yumimoto K, Uno I, Kudo R, Ishimoto H. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sensing. 2018; 10(6):937. https://doi.org/10.3390/rs10060937
Chicago/Turabian StyleHara, Yukari, Tomoaki Nishizawa, Nobuo Sugimoto, Kazuo Osada, Keiya Yumimoto, Itsushi Uno, Rei Kudo, and Hiroshi Ishimoto. 2018. "Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling" Remote Sensing 10, no. 6: 937. https://doi.org/10.3390/rs10060937
APA StyleHara, Y., Nishizawa, T., Sugimoto, N., Osada, K., Yumimoto, K., Uno, I., Kudo, R., & Ishimoto, H. (2018). Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sensing, 10(6), 937. https://doi.org/10.3390/rs10060937