Parameterization of Spectral Particulate and Phytoplankton Absorption Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting Norwegian Fjord Ecosystems
Abstract
:1. Introduction
- Investigate the variability in OACs and particulate absorption coefficients
- Assess the relative contribution of phytoplankton (aphy (λ)) and non-algal particles ((anap (λ)) to total absorption (ap (λ)).
- Analyze trends in the variability of total particulate and phytoplankton absorption coefficients against Tchla in Sognefjord and Trondheimsfjord.
- Develop and test fjord-specific parameterizations of particulate and phytoplankton absorption coefficients as functions of Tchla.
- Investigate the bio-optical evidences of possible phytoplankton package effects and determine contributions of accessory pigments from phytoplankton.
2. Materials and Methods
2.1. Sample Collection
2.2. Determination of OAC Concentrations
2.3. Particulate Absorption Measurements
3. Results
3.1. Variability in OACs and Absorption Coefficients
3.2. Relative Contribution of Phytoplankton and Non-Algal Particles to Total Absorption
3.3. Analyzing Trends in ax vs. Tchla
3.4. Parameterization of ap (λ) and aphy (λ) as Functions of Tchla in Sognefjord and Trondheimsfjord
3.4.1. Development of Model Parameters
3.4.2. Validation of Parameterization
3.5. Pigment-Specific Phytoplankton Coefficients
4. Discussion
- an increasing package effect and
- inverse covariation between the relative abundance of accessory pigments (chl b, chl c, and carotenoids) and Tchla.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic(case 1) waters- analysis and implications for bio-optical models. J. Geophys. Res. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Nima, C.; Frette, Ø.; Hamre, B.; Erga, S.R.; Chen, Y.-C.; Zhao, L.; Sørensen, K.; Norli, M.; Stamnes, K.; Stamnes, J.J. Absorption properties of high-latitude norwegian coastal water: The impact of cdom and particulate matter. Estuar. Coast. Shelf Sci. 2016, 178, 158–167. [Google Scholar] [CrossRef]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res. Oceans 1995, 100, 13321–13332. [Google Scholar] [CrossRef]
- Stramska, M.; Stramski, D.; Hapter, R.; Kaczmarek, S.; Stoń, J. Bio-optical relationships and ocean color algorithms for the north polar region of the atlantic. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Dierssen, H.; Smith, R. Bio-optical properties and remote sensing ocean color algorithms for antarctic peninsula waters. J. Geophys. Res. Oceans 2000, 105, 26301–26312. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Cota, G.; Stuart, V.; Maass, H.; Platt, T. Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches. Int. J. Remote Sens. 2001, 22, 249–273. [Google Scholar] [CrossRef]
- Cota, G.F.; Harrison, W.G.; Platt, T.; Sathyendranath, S.; Stuart, V. Bio-optical properties of the labrador sea. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Matsuoka, A.; Huot, Y.; Shimada, K.; Saitoh, S.-I.; Babin, M. Bio-optical characteristics of the western arctic ocean: Implications for ocean color algorithms. Can. J. Remote Sens. 2007, 33, 503–518. [Google Scholar] [CrossRef]
- Garcia, V.M.T.; Signorini, S.; Garcia, C.A.E.; McClain, C.R. Empirical and semi-analytical chlorophyll algorithms in the south-western atlantic coastal region (25–40 s and 60–45 w). Int. J. Remote Sens. 2006, 27, 1539–1562. [Google Scholar] [CrossRef]
- Lapucci, C.; Rella, M.A.; Brandini, C.; Ganzin, N.; Gozzini, B.; Maselli, F.; Massi, L.; Nuccio, C.; Ortolani, A.; Trees, C.C. Evaluation of empirical and semi-analytical chlorophyll algorithms in the ligurian and north tyrrhenian seas. J. Appl. Remote Sens. 2012, 6, 063565. [Google Scholar] [CrossRef]
- Marra, J.; Trees, C.C.; O’Reilly, J.E. Phytoplankton pigment absorption: A strong predictor of primary productivity in the surface ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 155–163. [Google Scholar] [CrossRef]
- Murray, C.; Markager, S.; Stedmon, C.A.; Juul-Pedersen, T.; Sejr, M.K.; Bruhn, A. The influence of glacial melt water on bio-optical properties in two contrasting greenlandic fjords. Estuar. Coast. Shelf Sci. 2015, 163, 72–83. [Google Scholar] [CrossRef]
- Salvanes, A.G.V.; Aksnes, D.L.; Giske, J. Ecosystem model for evaluating potential cod production in a west norwegian fjord. Mar. Ecol. Prog. Ser. 1992, 90, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Hamre, B.; Frette, Ø.; Erga, S.R.; Stamnes, J.J.; Stamnes, K. Parameterization and analysis of the optical absorption and scattering coefficients in a western norwegian fjord: A case ii water study. Appl. Opt. 2003, 42, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, V.; Voß, D.; Wollschlaeger, J.; Zielinski, O. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in sognefjord and trondheimsfjord, norway. J. Geophys. Res. Oceans 2017, 122, 3828–3847. [Google Scholar] [CrossRef]
- Zielinski, O. Station List and Links to Master Tracks in Different Resolutions of Heincke Cruise HE448, Bremerhaven—Trondheim, 2015-07-07–2015-07-30; Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research: Bremerhaven, Germany, 2015. [Google Scholar]
- Zielinski, O.; Rohardt, G. Physical Oceanography during Heincke Cruise HE448; Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research: Bremerhaven, Germany, 2016. [Google Scholar]
- Wurl, O.; Wisotzki, A. Physical Oceanography during Heincke Cruise HE491; Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research: Bremerhaven, Germany, 2017. [Google Scholar]
- Wurl, O. Station List and Links to Master Tracks in Different Resolutions of Heincke Cruise HE491, Bremerhaven–Trondheim, 2017-07-08–2017-07-27; Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research: Bremerhaven, Germany, 2017. [Google Scholar]
- Bowers, D.; Harker, G.; Stephan, B. Absorption spectra of inorganic particles in the irish sea and their relevance to remote sensing of chlorophyll. Int. J. Remote Sens. 1996, 17, 2449–2460. [Google Scholar] [CrossRef]
- Roesler, C.; Stramski, D.; D’Sa, E.; Röttgers, R.; Reynolds, R.A. Spectrophotometric Measurements of Particulate Absorption Using Filter Pads. Available online: http://ioccg.org/wp-content/uploads/2017/11/chapter_5_corrigendum.pdf (accessed on 19 June 2018).
- Voß, D.; Meier, D.; Mascarenhas, V.J.; Friedrichs, A.; Zielinski, O. Absorbance measurements of total particulate and non-algal particulate matter during heincke cruise HE448 in sognefjord and trondheimsfjord, norway. J. Geophys. Res. Ocean. 2018, 122, 3828–3847. [Google Scholar] [CrossRef]
- Mascarenhas, V.J.; Zielinski, O. Spectral particulate absorption properties in sognefjord and trondheimsfjord, norway. In Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–6. [Google Scholar]
- Holinde, L.; Zielinski, O. Bio-optical characterization and light availability parameterization in uummannaq fjord and vaigat–disko bay (west greenland). Ocean Sci. 2016, 12, 117–128. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Andersen, T.J.; Nielsen, M.H.; Pejrup, M. Suspended matter, chl-a, cdom, grain sizes, and optical properties in the arctic fjord-type estuary, kangerlussuaq, west greenland during summer. Estuar. Coasts 2010, 33, 1442–1451. [Google Scholar] [CrossRef]
- Carder, K.L.; Hawes, S.; Baker, K.; Smith, R.; Steward, R.; Mitchell, B. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. J. Geophys. Res. Oceans 1991, 96, 20599–20611. [Google Scholar] [CrossRef]
- Hoepffner, N.; Sathyendranath, S. Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western north atlantic. Limnol. Oceanogr. 1992, 37, 1660–1679. [Google Scholar] [CrossRef]
Acronyms, Abbreviations and Symbols | Unit | Description |
---|---|---|
HE448 (Pangaea ID) | RV Heincke-cruise 448 | |
HE491 (Pangaea ID) | RV Heincke-cruise 491 | |
OACs | optically active constituents | |
AOPs | apparent optical properties | |
IOPs | inherent optical properties | |
Chla | mg m−3 | chlorophyll-a |
Tchla | mg m−3 | sum of chlorophyll-a and phaeopigment concentration |
CDOM | colored dissolved organic matter | |
NAP | non-algal particulates | |
TSM | mg L−1 | total suspended matter |
ISM | mg L−1 | inorganic suspended matter |
FOD | m | first optical depth |
Rrs | sr−1 | remote sensing reflectance |
a | m−1 | total absorption coefficient |
bb | m−1 | total backscattering coefficient |
aw | m−1 | absorption coefficient of water |
ap | m−1 | absorption coefficient of particulate matter |
anap | m−1 | absorption coefficient of non-algal particulates |
Snap | nm−1 | slope coefficient of non-algal particulates |
aphy | m−1 | absorption coefficient of phytoplankton |
acdom | m−1 | absorption coefficient of CDOM |
a*phy | m2 mg−1 | pigment-specific phytoplankton absorption coefficient |
Ap | power law coefficient in ap vs. Tchla | |
Ep | power law coefficient in ap vs. Tchla | |
Aphy | power law coefficient in aphy vs. Tchla | |
Ephy | power law coefficient in aphy vs. Tchla |
Sognefjord | (N = 16) | Trondheimsfjord | (N = 9) | ||||
---|---|---|---|---|---|---|---|
HE448 | unit | Min | Max | Mean ± SD | Min | Max | Mean ± SD |
Tchla | mg m−3 | 0.96 | 7.45 | 1.87 ± 1.49 | 1.59 | 2.92 | 2.18 ± 0.36 |
TSM | mg L−1 | 0.55 | 2.23 | 1.16 ± 0.38 | 0.80 | 1.40 | 1.10 ± 0.20 |
ISM | mg L−1 | 0.22 | 1.29 | 0.58 ± 0.29 | 0.38 | 0.74 | 0.55 ± 0.12 |
acdom 440 | m−1 | 0.123 | 0.3 | 0.22 ± 0.046 | 0.50 | 0.90 | 0.71 ± 0.10 |
ap 440 | m−1 | 0.053 | 0.314 | 0.1 ± 0.06 | 0.055 | 0.121 | 0.080 ± 0.017 |
aphy 440 | m−1 | 0.049 | 0.257 | 0.078 ± 0.047 | 0.052 | 0.114 | 0.076 ± 0.017 |
anap 440 | m−1 | 0.003 | 0.071 | 0.022 ± 0.018 | 0.002 | 0.008 | 0.004 ± 0.002 |
a*phy 440 | m2mg−1 | 0.023 | 0.061 | 0.045 ± 0.009 | 0.031 | 0.039 | 0.035 ± 0.003 |
Sognefjord | (N = 3) | Trondheimsfjord | (N = 3) | ||||
HE491 | unit | Min | Max | Mean ± SD | Min | Max | Mean ± SD |
Tchla | mg m−3 | 0.4 | 1.17 | 0.78 ± 0.27 | 1.04 | 2.49 | 1.76 ± 0.58 |
TSM | mg L−1 | 0.34 | 1.27 | 0.73 ± 0.30 | 0.65 | 0.95 | 0.78 ± 0.13 |
ISM | mg L−1 | 0.13 | 1.01 | 0.37 ± 0.28 | 0.20 | 0.33 | 0.27 ± 0.05 |
Sognefjord | Trondheimsfjord | ||||
---|---|---|---|---|---|
Tchla Derived from | R2 (Regression) (N = 3) | R2 (1:1) (N = 3) | Tchla Derived from | R2 (Regression) (N = 3) | 1:1 R2 (N = 3) |
HE448 (excluding inner-fjord stations) | |||||
ap 440 | 0.76 | 0.67 | ap 440 | NA | NA |
aphy 440 | 0.59 | 0.54 | aphy 440 | NA | NA |
ap 675 | 0.80 | 0.79 | ap 675 | NA | NA |
aphy 675 | 0.67 | 0.66 | aphy 675 | NA | NA |
HE491 (excluding inner-fjord stations) | |||||
ap 440 | 0.70 | 0.69 | ap 440 | 0.95 | 0.95 |
aphy 440 | 0.45 | 0.44 | aphy 440 | 0.95 | 0.92 |
ap 675 | 0.06 | −0.80 | ap 675 | 0.83 | 0.67 |
aphy 675 | 0.99 | 0.95 | aphy 675 | 0.83 | 0.80 |
HE448 (including inner-fjord stations) | |||||
ap 440 | 0.74 | −0.9 | ap 440 | NA | NA |
aphy 440 | 0.59 | −0.45 | aphy 440 | NA | NA |
ap 675 | 0.79 | 0.44 | ap 675 | NA | NA |
aphy 675 | 0.67 | 0.32 | aphy 675 | NA | NA |
HE491 (including inner-fjord stations) | |||||
ap 440 | 0.93 | 0.83 | ap 440 | 0.95 | 0.95 |
aphy 440 | 0.43 | 0.42 | aphy 440 | 0.95 | 0.92 |
ap 675 | 0.99 | 0.165 | ap 675 | 0.83 | 0.67 |
aphy 675 | 0.05 | −1.08 | aphy 675 | 0.83 | 0.80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascarenhas, V.J.; Zielinski, O. Parameterization of Spectral Particulate and Phytoplankton Absorption Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting Norwegian Fjord Ecosystems. Remote Sens. 2018, 10, 977. https://doi.org/10.3390/rs10060977
Mascarenhas VJ, Zielinski O. Parameterization of Spectral Particulate and Phytoplankton Absorption Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting Norwegian Fjord Ecosystems. Remote Sensing. 2018; 10(6):977. https://doi.org/10.3390/rs10060977
Chicago/Turabian StyleMascarenhas, Veloisa J., and Oliver Zielinski. 2018. "Parameterization of Spectral Particulate and Phytoplankton Absorption Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting Norwegian Fjord Ecosystems" Remote Sensing 10, no. 6: 977. https://doi.org/10.3390/rs10060977
APA StyleMascarenhas, V. J., & Zielinski, O. (2018). Parameterization of Spectral Particulate and Phytoplankton Absorption Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting Norwegian Fjord Ecosystems. Remote Sensing, 10(6), 977. https://doi.org/10.3390/rs10060977