Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing
Abstract
:1. Introduction
2. Preliminary
2.1. Linear Mixture Model (LMM)
2.2. Symmetric ADMM
3. Double Reweighted Sparse and Graph Regularized Unmixing Method
3.1. Double Reweighted Sparse Prior
3.2. Graph Regularizer
3.3. The Double Reweighted Sparse and Graph Regularized Unmixing Model
3.4. Optimization Algorithm
Algorithm 1 Pseudocode of DRSGHU |
1. Initialization: , , , ; |
2. set , choose , , , r, s; |
3. repeat |
, |
, |
, |
, |
, |
, |
, |
; |
4. update iteration ; |
5. until the stopping criterion is satisfied. |
4. Experimental Results
4.1. Experiments on Simulated Data
- is generated from a library of 262 spectral library signatures generally found on satellites from the National Aeronautics and Space Administration Johnson Space Center (NASA JSC) Spacecraft Materials Spectral Database [52], with 100 spectral bands.
- is generated from a random selection of 240 materials from the U.S. Geological Survey (USGS) digital spectral library (splib06) [24]. The reflectance values are measured for 224 spectral bands uniformly distributed in the interval 0.4–2.5 m.
4.2. Experiments on Real Data
5. Discussion
5.1. The Graph Laplacian Matrix L
5.2. Parameter Analysis
5.3. Convergence Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manolakis, D.; Siracusa, C.; Shaw, G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1392–1409. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Yang, J. Hyperspectral image denoising via sparse representation and low-rank constraint. IEEE Trans. Geosci. Remote Sens. 2015, 53, 296–308. [Google Scholar] [CrossRef]
- Li, C.; Sun, T.; Kelly, K.F.; Zhang, Y. A compressive sensing and unmixing scheme for hyperspectral data processing. IEEE Trans. Image Process. 2012, 21, 1200–1210. [Google Scholar] [PubMed]
- Wang, R.; Li, H.C.; Pizurica, A.; Li, J.; Plaza, A.; Emery, W.J. Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1146–1150. [Google Scholar] [CrossRef]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef]
- Du, Q.; Raksuntorn, N.; Younan, N.H.; King, R.L. End-member extraction for hyperspectral image analysis. Appl. Opt. 2008, 47, F77–F84. [Google Scholar] [CrossRef] [PubMed]
- Heinz, D.; Chang, C.I. Fully constrained least squares linear mixture analysis for material quantificationin in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L. Sparsity-Regularized Robust Non-Negative Matrix Factorization for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Observ. 2016, 9, 4267–4279. [Google Scholar] [CrossRef]
- Nascimento, J.M.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Liu, X.; Xia, W.; Wang, B.; Zhang, L. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 757–772. [Google Scholar] [CrossRef]
- Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 27 October 1999; pp. 266–275. [Google Scholar]
- Nascimento, J.M.; Dias, J.M.B. Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans. Geosci. Remote Sens. 2005, 43, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bioucas-Dias, J.M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Boston, MA, USA, 7–11 July 2008; Volume 3, pp. 250–253. [Google Scholar]
- Chang, C.I.; Wu, C.C.; Liu, W.m.; Ouyang, Y.C. A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2804–2819. [Google Scholar] [CrossRef]
- Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [PubMed]
- Huck, A.; Guillaume, M. Robust hyperspectral data unmixing with spatial and spectral regularized NMF. In Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Qian, Y.; Jia, S.; Zhou, J.; Robles-Kelly, A. Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4282–4297. [Google Scholar] [CrossRef]
- Lu, X.; Wu, H.; Yuan, Y.; Yan, P.g.; Li, X. Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2815–2826. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, Y.; Xiang, S.; Fan, B.; Pan, C. Structured sparse method for hyperspectral unmixing. ISPRS J. Photogramm. 2014, 88, 101–118. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Figueiredo, M.A. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing. In Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Collaborative sparse regression for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2014, 52, 341–354. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Li, H.; Wang, Q.; Chen, C.P. Reweighted sparse regression for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 479–488. [Google Scholar] [CrossRef]
- Tang, W.; Shi, Z.; Wu, Y.; Zhang, C. Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information. IEEE Trans. Geosci. Remote Sens. 2015, 53, 770–783. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, F.; Huang, T.Z.; Ng, M.K.; Plemmons, R.J. Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4045–4058. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, R.; Zhang, L. Non-local sparse unmixing for hyperspectral remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Observ. 2014, 7, 1889–1909. [Google Scholar] [CrossRef]
- Giampouras, P.V.; Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. Hyperspectral image unmixing via simultaneously sparse and low rank abundance matrix estimation. In Proceedings of the 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Ammanouil, R.; Ferrari, A.; Richard, C. A graph laplacian regularization for hyperspectral data unmixing. In Proceedings of the IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 1637–1641. [Google Scholar]
- Ammanouil, R.; Ferrari, A.; Richard, C. Hyperspectral data unmixing with graph-based regularization. In Proceedings of the 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Rajabi, R.; Ghassemian, H. Sparsity Constrained Graph Regularized NMF for Spectral Unmixing of Hyperspectral Data. J. Indian Soc. Remote. 2015, 43, 269–278. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observ. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Heylen, R.; Parente, M.; Gader, P. A review of nonlinear hyperspectral unmixing methods. IEEE J. Sel. Top. Appl. Earth Observ. 2014, 7, 1844–1868. [Google Scholar] [CrossRef]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2014–2039. [Google Scholar] [CrossRef]
- He, B.; Ma, F.; Yuan, X. On the Step Size of Symmetric Alternating Directions Method of Multipliers. Available online: http://www.optimization-online.org (accessed on 26 May 2015).
- Wang, S.; Huang, T.Z.; Zhao, X.L.; Mei, J.J.; Huang, J. Speckle noise removal in ultrasound images by first-and second-order total variation. Numer. Algorithms 2018, 78, 513–533. [Google Scholar] [CrossRef]
- Liu, J.; Huang, T.Z.; Selesnick, I.W.; Lv, X.G.; Chen, P.Y. Image restoration using total variation with overlapping group sparsity. Inf. Sci. 2015, 295, 232–246. [Google Scholar] [CrossRef]
- Ji, T.Y.; Huang, T.Z.; Zhao, X.L.; Ma, T.H.; Liu, G. Tensor completion using total variation and low-rank matrix factorization. Inf. Sci. 2016, 326, 243–257. [Google Scholar] [CrossRef]
- Liu, J.; Huang, T.Z.; Lv, X.G.; Wang, S. High-order total variation-based Poissonian image deconvolution with spatially adapted regularization parameter. Appl. Math. Modell. 2017, 45, 516–529. [Google Scholar] [CrossRef]
- Mei, J.J.; Dong, Y.; Huang, T.Z.; Yin, W. Cauchy noise removal by nonconvex admm with convergence guarantees. J. Sci. Comput. 2018, 74, 743–766. [Google Scholar] [CrossRef]
- Huang, Y.M.; Ng, M.K.; Wen, Y.W. A new total variation method for multiplicative noise removal. SIAM J. Imag. Sci. 2009, 2, 20–40. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Huang, J. Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint. Remote Sens. 2017, 9, 559. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, F.; Ng, M.K. A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 2014, 7, 456–475. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3909–3921. [Google Scholar] [CrossRef]
- Cai, D.; He, X.; Han, J.; Huang, T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1548–1560. [Google Scholar] [PubMed]
- Chung, F.R. Spectral Graph Theory; American Mathematical Soc.: Providence, RI, USA, 1997; Volume 92. [Google Scholar]
- Xiang, S.; Nie, F.; Zhang, C. Semi-supervised classification via local spline regression. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2039–2053. [Google Scholar] [CrossRef] [PubMed]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 2011, 20, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ng, M.K.; Zhao, X.L. Alternating direction method of multipliers for nonlinear image restoration problems. IEEE Trans. Image Process. 2015, 24, 33–43. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Liu, H.; Wang, Z.; Yuan, X. A Strictly Contractive Peaceman—Rachford Splitting Method for Convex Programming. SIAM J. Optim. 2014, 24, 1011–1040. [Google Scholar] [CrossRef] [PubMed]
- Schildknecht, T.; Vannanti, A.; Krag, H.; Erd, C. Reflectance spectra of space debris in geo. In Proceedings of the 2009 AMOS Technical Conference, Maui, HI, USA, 1–4 September 2009. [Google Scholar]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar] [Green Version]
Data | SNR | SUnSAL | CLSUnSAL | DRSU-TV | GLUP-Lap | GraphHU | SGHU | DRSGHU |
DC1 | 20 | 3.89 | 4.84 | 10.69 | 5.23 | 4.19 | 5.52 | 7.72 |
30 | 8.54 | 9.47 | 19.81 | 12.46 | 11.19 | 11.96 | 20.26 | |
40 | 14.13 | 15.84 | 28.64 | 19.28 | 16.49 | 17.40 | 28.85 | |
Data | SNR | SUnSAL | CLSUnSAL | DRSU-TV | GLUP-Lap | GraphHU | SGHU | DRGSHU |
DC2 | 20 | 2.98 | 6.20 | 10.72 | 7.58 | 5.75 | 6.82 | 12.27 |
30 | 6.20 | 7.03 | 25.86 | 18.07 | 11.63 | 20.27 | 26.03 | |
40 | 11.30 | 11.94 | 30.42 | 27.58 | 18.95 | 28.99 | 49.19 |
No. | SUnSAL | CLSUnSAL | DRSU-TV | GLU-Lap | GraphHU | SGHU | DRSGHU |
---|---|---|---|---|---|---|---|
Endmember1 | 0.2123 | 0.1808 | 0.0488 | 0.0768 | 0.1089 | 0.1084 | 0.0388 |
Endmember2 | 0.2400 | 0.1205 | 0.1006 | 0.1391 | 0.2306 | 0.1773 | 0.1232 |
Endmember3 | 0.0505 | 0.0658 | 0.0717 | 0.0861 | 0.1392 | 0.0690 | 0.0702 |
Endmember4 | 0.2140 | 0.2152 | 0.1533 | 0.2118 | 0.3095 | 0.2631 | 0.1328 |
Endmember5 | 0.3633 | 0.3972 | 0.0682 | 0.2328 | 0.2168 | 0.2015 | 0.0498 |
Endmember6 | 0.4986 | 0.4864 | 0.1154 | 0.2341 | 0.3873 | 0.3574 | 0.1079 |
Endmember7 | 0.4645 | 0.3654 | 0.1390 | 0.2049 | 0.3592 | 0.3619 | 0.1531 |
Endmember8 | 0.1715 | 0.1115 | 0.0625 | 0.0810 | 0.1042 | 0.1124 | 0.0496 |
Endmember9 | 0.0797 | 0.0290 | 0.1060 | 0.1086 | 0.1551 | 0.0517 | 0.0940 |
average | 0.2549 | 0.2191 | 0.0962 | 0.1528 | 0.2234 | 0.2111 | 0.0819 |
SNR | SUnSAL | CLSUnSAL | DRSU-TV | GLUP-Lap | GraphHU | SGHU | DRSGHU |
---|---|---|---|---|---|---|---|
20 dB | 0.5397 | 0.4010 | 0.1190 | 0.1986 | 0.1153 | 0.1594 | 0.0722 |
30 dB | 0.2451 | 0.2033 | 0.0453 | 0.0531 | 0.0170 | 0.0446 | 0.0133 |
40 dB | 0.1214 | 0.0976 | 0.0267 | 0.0152 | 0.0060 | 0.0104 | 0.0028 |
Data | Non-Filter | Gaussian Filter | Bilateral Filter | Reference |
---|---|---|---|---|
DC1 | 7.61 | 10.19 | 9.49 | 11.72 |
DC2 | 12.27 | 12.84 | 13.00 | 14.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Huang, T.-Z.; Zhao, X.-L.; Liu, G.; Cheng, Y. Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing. Remote Sens. 2018, 10, 1046. https://doi.org/10.3390/rs10071046
Wang S, Huang T-Z, Zhao X-L, Liu G, Cheng Y. Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing. Remote Sensing. 2018; 10(7):1046. https://doi.org/10.3390/rs10071046
Chicago/Turabian StyleWang, Si, Ting-Zhu Huang, Xi-Le Zhao, Gang Liu, and Yougan Cheng. 2018. "Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing" Remote Sensing 10, no. 7: 1046. https://doi.org/10.3390/rs10071046
APA StyleWang, S., Huang, T. -Z., Zhao, X. -L., Liu, G., & Cheng, Y. (2018). Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing. Remote Sensing, 10(7), 1046. https://doi.org/10.3390/rs10071046