Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions
Abstract
:1. Introduction
2. Material
2.1. SAR Data
2.2. Other Data Sets
3. Methods
3.1. SAR Backscatter Processing
3.2. PolInSAR Processing
3.3. Statistical Models for Forest Aboveground Biomass Estimation
3.4. Validation of Aboveground Biomass Estimation
4. Results
4.1. Aboveground Biomass Estimation with SAR Backscatter
4.1.1. Remningstorp
4.1.2. Krycklan
4.2. Aboveground Biomass Estimation with PolInSAR Height and Combination with SAR Backscatter
4.2.1. Remningstorp
4.2.2. Krycklan
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 1–13. [Google Scholar] [CrossRef]
- Olander, L.P.; Gibbs, H.K.; Steininger, M.; Swenson, J.J.; Murray, B.C. Reference scenarios for deforestation and forest degradation in support of REDD: A review of data and methods. Environ. Res. Lett. 2008, 3, 1–11. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- Martin, A.R.; Thomas, S.C. A Reassessment of Carbon Content in Tropical Trees. PLoS ONE 2011, 6, e23533. [Google Scholar] [CrossRef] [PubMed]
- ESA. Report for Mission Selection: Biomass, ESA SP-1324/1; European Space Agency: Nordwijk, The Netherlands, 2012. [Google Scholar]
- Le Toan, T.; Quegan, S.; Davidson, M.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L. Radar backscatter and biomass saturation: Ramifications for global biomass inventory. IEEE Trans. Geosci. Remote Sens. 1995, 33, 511–518. [Google Scholar] [CrossRef]
- Villard, L.; Le Toan, T. Relating P-Band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain: y0 or t0? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 214–223. [Google Scholar] [CrossRef]
- Soja, M.J.; Sandberg, G.; Ulander, L.M.H. Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain Using P-Band SAR Backscatter Intensity Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2646–2665. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, G.; Ulander, L.; Fransson, J.; Holmgren, J.; Toan, T.L. L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens. Environ. 2011, 115, 2874–2886, DESDynI VEG-3D Special Issue. [Google Scholar] [CrossRef]
- Santos, J.R.; Freitas, C.C.; Araujo, L.S.; Dutra, L.V.; Mura, J.C.; Gama, F.F.; Soler, L.S.; Sant’Anna, S.J. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sens. Environ. 2003, 87, 482–493. [Google Scholar] [CrossRef]
- Hoekman, D.H.; Quinones, M.J. Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. IEEE Trans. Geosci. Remote Sens. 2000, 38, 685–696. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Saatchi, S.; Marlier, M.; Chazdon, R.L.; Clark, D.B.; Russell, A.E. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sens. Environ. 2011, 115, 2836–2849. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications: A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Luckman, A.; Baker, J.; Wegmueller, U. Repeat-Pass Interferometric Coherence Measurements of Disturbed Tropical Forest from JERS and ERS Satellites. Remote Sens. Environ. 2000, 73, 350–360. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Soares, J.V.; Alves, D.S. Mapping deforestation and land use in amazon rainforest by using SIR-C imagery. Remote Sens. Environ. 1997, 59, 191–202. [Google Scholar] [CrossRef]
- Naidoo, L.; Mathieu, R.; Main, R.; Kleynhans, W.; Wessels, K.; Asner, G.; Leblon, B. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 234–250. [Google Scholar] [CrossRef] [Green Version]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Schlund, M.; von Poncet, F.; Kuntz, S.; Schmullius, C.; Hoekman, D.H. TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest. Remote Sens. Environ. 2015, 158, 255–266. [Google Scholar] [CrossRef]
- Castro, K.L.; Sanchez-Azofeifa, G.A.; Rivard, B. Monitoring secondary tropical forests using space-borne data: Implications for Central America. Int. J. Remote Sens. 2003, 24, 1853–1894. [Google Scholar] [CrossRef]
- Ranson, K.J.; Sun, G. Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans. Geosci. Remote Sens. 1994, 32, 388–396. [Google Scholar] [CrossRef]
- Luckman, A.; Baker, J.; Honzak, M.; Lucas, R. Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics. Remote Sens. Environ. 1998, 63, 126–139. [Google Scholar] [CrossRef]
- Mitchard, E.; Saatchi, S.; Lewis, S.; Feldpausch, T.; Woodhouse, I.; Sonke, B.; Rowland, C.; Meir, P. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens. Environ. 2011, 115, 2861–2873, DESDynI VEG-3D Special Issue. [Google Scholar] [CrossRef]
- Gama, F.F.; Dos Santos, J.R.; Mura, J.C. Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data. Remote Sens. 2010, 2, 939–956. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ. 2011, 115, 490–507. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P.; Huber, S.; Villano, M.; Pardini, M.; Eineder, M.; et al. Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth’s Surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Moghaddam, M. Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery. IEEE Trans. Geosci. Remote Sens. 2000, 38, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Veiga, P.; Saatchi, S.; Tansey, K.; Balzter, H. Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sens. Environ. 2016, 183, 265–281. [Google Scholar] [CrossRef]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Bui, D.T. Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef]
- Basuki, T.M.; Skidmore, A.K.; Hussin, Y.A.; Duren, I.V. Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data. Int. J. Remote Sens. 2013, 34, 4871–4888. [Google Scholar] [CrossRef]
- Hame, T.; Rauste, Y.; Antropov, O.; Ahola, H.; Kilpi, J. Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 92–101. [Google Scholar] [CrossRef]
- Papathanassiou, K.; Cloude, S. Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2352–2363. [Google Scholar] [CrossRef]
- Hajnsek, I.; Kugler, F.; Lee, S.K.; Papathanassiou, K. Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign. IEEE Trans. Geosci. Remote Sens. 2009, 47, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Neumann, M.; Saatchi, S.S.; Ulander, L.M.H.; Fransson, J.E.S. Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass. IEEE Trans. Geosci. Remote Sens. 2012, 50, 714–726. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Hajnsek, I.; Scheiber, R.; Ulander, L.; Gustavsson, A.; Sandberg, G.; Tebaldini, S.; Guarnieri, A.M.; Rocca, F.; Bombardini, F.; Pardini, M. BIOSAR 2007—Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment; Final Report; ESA: Paris, France, 2008; Volume 1. [Google Scholar]
- Hajnsek, I.; Scheiber, R.; Keller, M.; Horn, R.; Lee, S.; Ulander, L.; Gustavsson, A.; Sandberg, G.; Le Toan, T.; Tebaldini, S.; et al. BIOSAR 2008—Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2008 Experiment; Final Report; ESA: Paris, France, 2009; Volume 1. [Google Scholar]
- Hoekman, D.H.; Reiche, J. Multi-model radiometric slope correction of SAR images of complex terrain using a two-stage semi-empirical approach. Remote Sens. Environ. 2015, 156, 1–10. [Google Scholar] [CrossRef]
- Ulander, L.M.H. Radiometric slope correction of synthetic-aperture radar images. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1115–1122. [Google Scholar] [CrossRef]
- Van Zyl, J.J. The effect of topography on radar scattering from vegetated areas. IEEE Trans. Geosci. Remote Sens. 1993, 31, 153–160. [Google Scholar] [CrossRef]
- Hallberg, B.; Smith-Jonforsen, G.; Ulander, L.M.H.; Sandberg, G. A Physical-Optics Model for Double-Bounce Scattering From Tree Stems Standing on an Undulating Ground Surface. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2607–2621. [Google Scholar] [CrossRef]
- Horn, B.K.P. Hill shading and the reflectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef] [Green Version]
- Hoekman, D.H. Radar Remote Sensing Data for Applications in Forestry. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1990. [Google Scholar]
- Goering, D.J.; Chen, H.; Hinzman, L.D.; Kane, D.L. Removal of terrain effects from SAR satellite imagery of Arctic tundra. IEEE Trans. Geosci. Remote Sens. 1995, 33, 185–194. [Google Scholar] [CrossRef]
- Cloude, S.; Papathanassiou, K. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Cloude, S.; Papathanassiou, K. Three-stage inversion process for polarimetric SAR interferometry. IEE Proc. Radar Sonar Navig. 2003, 150, 125–134. [Google Scholar] [CrossRef]
- Kugler, F.; Lee, S.K.; Hajnsek, I.; Papathanassiou, K.P. Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5294–5311. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Madsen, S.N.; Moghaddam, M.; van Zyl, J.J. Vegetation characteristics and underlying topography from interferometric radar. Radio Sci. 1996, 31, 1449–1485. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Siqueira, P.R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Sci. 2000, 35, 141–177. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Kugler, F.; Papathanassiou, K.; Hajnsek, I. Multibaseline Polarimetric SAR Interferometry Forest Height Inversion Approaches. In Proceedings of the ESA POLinSAR Workshop, Frascati, Italy, 24–28 January 2011. [Google Scholar]
- Rignot, E.; Way, J.; Williams, C.; Viereck, L. Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Fransson, J.E.S. Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data. Int. J. Remote Sens. 1999, 20, 123–137. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F. Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands. IEEE Trans. Geosci. Remote Sens. 2012, 50, 232–246. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Held, D.; Donson, M.C.; McDonald, K.C.; Senior, T.B.A. Relating Polaization Phase Difference of SAR Signals to Scene Properties. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 83–92. [Google Scholar] [CrossRef]
- Skriver, H.; Svendsen, M.T.; Thomsen, A.G. Multitemporal C- and L-band polarimetric signatures of crops. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2413–2429. [Google Scholar] [CrossRef]
- Askne, J.I.; Fransson, J.E.; Santoro, M.; Soja, M.J.; Ulander, L.M. Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions. Remote Sens. 2013, 5, 5574–5597. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.; Astrup, R.; Breidenbach, J.; Nilsen, B.; Weydahl, D. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sens. Environ. 2013, 139, 60–67. [Google Scholar] [CrossRef]
- Soja, M.; Persson, H.; Ulander, L. Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5083–5099. [Google Scholar] [CrossRef] [Green Version]
- Caicoya, A.T.; Kugler, F.; Hajnsek, I.; Papathanassiou, K.P. Large-Scale Biomass Classification in Boreal Forests With TanDEM-X Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5935–5951. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis; Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Chambers, J.M. Linear models. In Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, USA, 1992. [Google Scholar]
- Schlund, M.; Scipal, K.; Davidson, M.W. Forest classification and impact of BIOMASS resolution on forest area and aboveground biomass estimation. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 65–76. [Google Scholar] [CrossRef]
- Newman, M. Regression Analysis of log-transformed data: Statistical bias and its correction. Environ. Toxicol. Chem. 1993, 12, 1129–1133. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Wadsworth, IL, USA, 1984. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 1995, 14, 1137–1145. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Spiess, A.N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Mette, T.; Kugler, F.; Papathanassiou, K.; Hajnsek, I. Forest and the Random Volume over Ground-nature and effect of 3 possible error types. In Proceedings of the EUSAR 2006: 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 16–18 May 2006; pp. 1–4. [Google Scholar]
- Neeff, T.; Dutra, L.V.; dos Santos, J.R.; Freitas, C.d.C.; Araujo, L.S. Tropical Forest Measurement by Interferometric Height Modeling and P-Band Radar Backscatter. Forest Sci. 2005, 51, 585–594. [Google Scholar]
Campaign | Site | Dates | Band | Heading | Resolution in Range/Azimuth (m) | Across-Track Baseline (m) | |
---|---|---|---|---|---|---|---|
BioSAR-2 | Krycklan | 14 October 2008 | P-band | 25–55 | 313 | 2.1/1.6 | 8–40 |
BioSAR-2 | Krycklan | 14 October 2008 | P-band | 25–55 | 133 | 2.1/1.6 | 8–40 |
BioSAR-2 | Krycklan | 15 October 2008 | L-band | 25–55 | 313 | 2.1/1.2 | 6–30 |
BioSAR-2 | Krycklan | 15 October 2008 | L-band | 25–55 | 133 | 2.1/1.2 | 6–30 |
BioSAR-1 | Remningstorp | 9 March 2007 | P-band | 25–55 | 200 | 2.1/1.6 | 10 & 80 |
BioSAR-1 | Remningstorp | 2 April 2007 | P-band | 25–55 | 200 | 2.1/1.6 | 30, 40, 50 |
BioSAR-1 | Remningstorp | 2 May 2007 | P-band | 25–55 | 200 | 2.1/1.6 | 20, 60, 70 |
BioSAR-1 | Remningstorp | 9 March 2007 | L-band | 25–55 | 200 | 2.1/1.2 | 8 |
BioSAR-1 | Remningstorp | 2 April 2007 | L-band | 25–55 | 200 | 2.1/1.2 | 8 |
BioSAR-1 | Remningstorp | 2 May 2007 | L-band | 25–55 | 200 | 2.1/1.2 | 8 |
Site | Mean | Standard Deviation | Minimum | Maximum | n |
---|---|---|---|---|---|
Krycklan | 99.1 | 38.6 | 27.5 | 182.5 | 27 |
Remningstorp | 129.0 | 54.0 | 10.5 | 287.3 | 58 |
Model | L-Band | P-Band | Model | L- and P-Band | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (%) | AICc | RMSE (%) | AICc | RMSE (%) | AICc | ||||||
Remningstorp | 0.68 | 30.2 ± 10.5 * | −51.9 | 0.73 | 25.9 ± 8.3 | −55.0 | 0.78 | 25.3 ± 7.1 | −77.7 | ||
0.69 | 29.5 ± 8.5 ** | −48.5 | 0.83 | 22.0 ± 7.3 | −67.2 | 0.86 | 22.8 ± 5.5 | −95.3 | |||
0.66 | 24.5 ± 9.4 | −34.5 | 0.34 | 33.6 ± 8.8 | −14.6 | n.a. | n.a. | n.a. | n.a. | ||
0.67 | 24.2 ± 9.3 | −30.9 | 0.36 | 32.7 ± 8.0 | −9.3 | n.a. | n.a. | n.a. | n.a. | ||
0.80 | 23.4 ± 9.0 | −68.0 | 0.76 | 24.6 ± 7.5 * | −56.0 | 0.84 | 21.4 ± 7.4 | −92.6 | |||
0.80 | 24.2 ± 7.8 * | −65.6 | 0.83 | 21.8 ± 6.5 | −73.1 | 0.86 | 20.8 ± 8.2 | −108.6 | |||
Krycklan | 0.83 | 17.4 ± 6.2 | −50.7 | 0.25 | 29.5 ± 10.6 * | −13.0 | 0.83 | 18.6 ± 7.0 | −47.9 | ||
0.83 | 18.8 ± 8.4 | −49.8 | 0.60 | 24.3 ± 9.3 * | −25.1 | 0.84 | 18.8 ± 7.2 | −49.1 | |||
0.61 | 24.3 ± 8.5 | −32.5 | 0.30 | 31.7 ± 8.6 | −13.3 | n.a. | n.a. | n.a. | n.a. | ||
0.65 | 23.4 ± 8.1 | −34.0 | 0.33 | 31.0 ± 8.5 | −14.4 | n.a. | n.a. | n.a. | n.a. | ||
0.84 | 17.7 ± 7.2 | −48.9 | 0.55 | 21.5 ± 11.7 | −25.7 | 0.75 | 20.6 ± 9.1 | −34.2 | |||
0.84 | 19.7 ± 10.5 | −45.8 | 0.66 | 22.7 ± 13.0 * | −27.4 | 0.84 | 18.9 ± 7.1 | −46.5 |
Model | L-Band | P-Band | ||||
---|---|---|---|---|---|---|
***/*** | n.a. | n.a. | ***/** | n.a. | n.a. | |
***/*** | n.s./n.s. | n.a. | ***/n.s. | ***/*** | n.a. | |
***/*** | n.a. | n.a. | ***/n.s. | n.a. | n.a. | |
***/*** | n.a. | n.a. | n.a. | ***/n.s. | n.a. | |
n.a. | n.a. | ***/*** | n.a. | n.a. | ***/** | |
***/*** | n.a. | ***/n.s. | ***/*** | n.a. | **/*** | |
***/*** | n.s./n.s. | ***/n.s. | ***/* | ***/* | n.s./* | |
n.a. | n.a. | */*** | ***/n.s. | ***/n.s. | n.a. | |
***/*** | n.a. | */n.s. | n.a. | ***/n.s. | n.a. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlund, M.; Davidson, M.W.J. Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sens. 2018, 10, 1151. https://doi.org/10.3390/rs10071151
Schlund M, Davidson MWJ. Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sensing. 2018; 10(7):1151. https://doi.org/10.3390/rs10071151
Chicago/Turabian StyleSchlund, Michael, and Malcolm W. J. Davidson. 2018. "Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions" Remote Sensing 10, no. 7: 1151. https://doi.org/10.3390/rs10071151
APA StyleSchlund, M., & Davidson, M. W. J. (2018). Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sensing, 10(7), 1151. https://doi.org/10.3390/rs10071151