Remotely Sensed Analysis of Channel Bar Morphodynamics in the Middle Yangtze River in Response to a Major Monsoon Flood in 2002
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. River Stage Data and Satellite Images
3. Methodology
3.1. Bar Extraction and Parameters Calculation
3.2. Development of a Rating Curve of Bar Surface Area by River Stages
3.3. Estimation of Bar Volume Changes
3.4. Error Analysis
4. Results
4.1. Morphologic Changes of Bars
4.2. Volumetric Changes of Bars
4.3. Accuracy Assessment
5. Discussion
5.1. Possible Reasons for Morphologic Variations
5.2. Comparison with Bars in the Lower Mississippi River
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gilvear, D.; Willby, N. Channel dynamics and geomorphic variability as controls on gravel bar vegetation: River Tummel, Scotland. River Res. Appl. 2006, 22, 457–474. [Google Scholar] [CrossRef]
- Schuurman, F.; Kleinhans, M.G. Bar dynamics and bifurcation evolution in a modelled braided sand-bed river. Earth Surf. Process. Landf. 2015, 40, 1318–1333. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.G. Velocity-bed-form-texture patterns of meander bends in Lower Wabash River of Illinois and Indiana. Geol. Soc. Am. Bull. 1975, 86, 1511–1522. [Google Scholar] [CrossRef]
- Bridge, J.S. River and Floodplains: Forms, Processes, and Sedimentary Record; Blackwell: Oxford, UK, 2003. [Google Scholar]
- Wu, F.; Yeh, T. Forced bars induced by variations of channel width: Implications for incipient bifurcation. J. Geophys. Res. 1985, 110, F02009. [Google Scholar] [CrossRef]
- Crosato, A.; Mosselman, E. Simple physics-based predictor for the number of river bars and the transition between meandering and braiding. Water Resour. Res. 2009, 45, W03424. [Google Scholar] [CrossRef]
- Schuurman, F.; Marra, W.A.; Kleinhans, M.G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 2013, 118, 2509–2527. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Gao, C.; Dong, C.; Xia, C.; Xu, G. Variation of river islands around a large city along the Yangtze River from satellite remote sensing images. Sensors 2017, 17, 2213. [Google Scholar] [CrossRef] [PubMed]
- Grove, J.R.; Croke, J.; Thompson, C. Quantifying different riverbank erosion processes during an extreme flood event. Earth Surf. Process. Landf. 2013, 38, 1393–1406. [Google Scholar] [CrossRef]
- Kale, V.S. Geomorphic Effects of Monsoon Floods on Indian Rivers. Nat. Hazards 2003, 28, 65–84. [Google Scholar] [CrossRef]
- Wintenberger, C.L.; Rodrigues, S.; Claude, N.; Jugé, P.; Bréhéret, J.-G.; Villar, M. Dynamics of nonmigrating mid-channel bar and superimposed dunes in a sandy-gravelly river (Loire River, France). Geomorphology 2015, 248, 185–204. [Google Scholar] [CrossRef]
- Lotsari, E.; Vaaja, M.; Flener, C.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Annual bank and point bar morphodynamics of a meandering river determined by high-accuracy multitemporal laser scanning and flow data. Water Resour. Res. 2014, 50, 5532–5559. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Cai, X.; Wang, X.; Yan, R.; Zhang, T.; Zhang, Q.; Lu, X. Remotely sensed trajectory analysis of channel migration in lower Jingjiang reach during the period of 1983–2013. Remote Sens. 2015, 7, 16241–16256. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y. Sediment trapping by emerged channel bars in the lowermost Mississippi River during a major flood. Water 2015, 7, 6079–6096. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y. Dynamics of 30 large channel bars in the lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology 2018, 300, 31–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.; Zhang, Z.; Chen, Y.; Liu, C.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River Basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Jia, Y.; Li, W. Evolution analysis of channel bars in the middle and lower Yangtze River before and after impoundment of Three Gorges Reservoir. Res. Environ. Yangtze Basin 2015, 24, 65–73. (In Chinese) [Google Scholar] [CrossRef]
- Gao, C.; Chen, S.; Yu, J. River islands’ change and impacting factors in the lower reaches of the Yangtze River based on remote sensing. Quat. Int. 2013, 304, 13–21. [Google Scholar] [CrossRef]
- Dai, S.; Lu, X. Sediment deposition and erosion during the extreme flood events in the middle and lower reaches of the Yangtze River. Quat. Int. 2010, 226, 4–11. [Google Scholar] [CrossRef]
- Fan, P.; Li, J.; Liu, Q.; Singh, V.P. Case study: Influence of morphological changes on flooding in Jingjiang River. J. Hydraul. Eng. 2008, 134, 1757–1766. [Google Scholar] [CrossRef]
- Mao, B. Riverbed evolution of the Jiepai reach of Yangtze River. Yangtze River 2005, 36, 22–24. (In Chinese) [Google Scholar] [CrossRef]
- Yan, X.; Chen, L.; Yao, S.; Jin, Z.; Deng, C. Evolution of Goose-head Braided Channels in Luxikou Reach. J. Yangtze River Sci. Res. Inst. 2016, 33, 1–4. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Z.; Zeng, Q.; Duan, W.; Yang, G. Effect analysis of the renovating project in the Jiepai reach of the Yangtze River. J. Sediment Res. 2003, 28, 53–57. (In Chinese) [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Chu, Z.; Sun, X.; Zhai, S.; Xu, K. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Mar. Geol. 2006, 227, 13–30. [Google Scholar] [CrossRef]
- Morton, R.A.; Speed, F.M. Evaluation of shore lines and legal boundaries controlled by water levels on sandy beaches. J. Coast. Res. 1998, 14, 1373–1384. [Google Scholar]
- Work, E.A.; Gilmer, D.S. Utilization of satellite data for inventorying prairie ponds and lakes. Photogramm. Eng. Remote Sens. 1976, 42, 685–694. [Google Scholar]
- Sivanpillai, R.; Miller, S.N. Improvements in mapping water bodies using ASTER data. Ecol. Inform. 2010, 5, 73–78. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM plus and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhang, H.; Gorelick, S.M.; Zimba, P.V.; Zhang, X. A remote sensing method for estimating regional reservoir area and evaporative loss. J. Hydrol. 2017, 555, 213–227. [Google Scholar] [CrossRef]
- Balázs, B.; Bíró, T.; Dyke, G.; Singh, S.K.; Szabó, S. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrol. Sci. J. 2018, 63, 269–284. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, J. Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). J. Hydrol. 2013, 480, 10–18. [Google Scholar] [CrossRef]
- Ashworth, P.J.; Best, J.L.; Roden, J.E.; Bristow, C.S.; Klaassen, G.J. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology 2000, 47, 533–555. [Google Scholar] [CrossRef]
- Kasvi, E.; Vaaja, M.; Kaartinen, H.; Kukko, A.; Jaakkola, A.; Flener, C.; Hyyppä, H.; Hyyppä, J.; Alho, P. Sub-bend scale flow–sediment interaction of meander bends—A combined approach of field observations, close-range remote sensing and computational modelling. Geomorphology 2015, 238, 119–134. [Google Scholar] [CrossRef]
- Petts, G.E.; Gurnell, A.M. Dams and geomorphology: Research progress and future directions. Geomorphology 2005, 71, 27–47. [Google Scholar] [CrossRef]
- Copeland, R.R. Bank Protection Techniques Using Spur Dikes; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1983.
- Mao, L. The effect of hydrographs on bed load transport and bed sediment spatial arrangement. J. Geophys. Res. Earth Surf. 2012, 117, F03024. [Google Scholar] [CrossRef]
- Zhu, L.; Ge, H.; Li, Y.; Zhang, W. Branching channels in the middle Yangtze River, China. J. Basic Sci. Eng. 2015, 23, 246–258. (In Chinese) [Google Scholar] [CrossRef]
- Han, J.; Sun, Z.; Li, Y.; Yang, Y. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River. Geomorphology 2017, 298, 31–40. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream sedimentary and geomorphic impacts of the three gorges dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Ramirez, M.T.; Allison, M.A. Suspension of bed material over sand bars in the lower Mississippi River and its implications for Mississippi Delta environmental restoration. J. Geophys. Res. Earth Surf. 2013, 118, 1085–1104. [Google Scholar] [CrossRef]
- Meade, R.H.; Moody, J.A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 2010, 24, 35–49. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42, W04407. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Zhang, K. Relationship between morphology of typical sand bars and river channels. J. Sediment. Res. 2012, 1, 68–73. (In Chinese) [Google Scholar] [CrossRef]
Before the Flood | During and After the Flood | ||||
---|---|---|---|---|---|
Date | River Stage (m) | SCENE_ID | Date | River Stage (m) | SCENE_ID |
24 September2001 | 27.00 | LE71230392001267AGS00 | 23 June 2002 | 29.85 | LE71230392002174HIJ00 |
18 October 2001 | 25.22 | LT51230392001291BJC00 | 1 July 2002 | 30.90 | LT51230392002182BJC00 |
11 November 2001 | 24.65 | LE71230392001315SGS00 | 9 July 2002 | 30.65 | LE71230392002190SGS01 |
19 November 2001 | 23.08 | LT51230392001323BJC00 | 2 August 2002 | 29.53 | LT51230392002214BJC00 |
13 December 2001 | 19.95 | LE71230392001347EDC00 | 3 September 2002 | 30.91 | LT51230392002246BJC01 |
21 December 2001 | 20.16 | LT51230392001355BJC00 | 11 September 2002 | 27.99 | LE71230392002254SGS02 |
29 December 2001 | 19.61 | LE71230392001363EDC00 | 19 September 2002 | 25.75 | LT51230392002262BJC01 |
22 January 2002 | 18.69 | LT51230392002022BJC00 | 13 October 2002 | 23.57 | LE71230392002286EDC00 |
7 February 2002 | 19.12 | LT51230392002038BJC00 | 8 December 2002 | 21.35 | LT51230392002342BJC00 |
15 February 2002 | 18.99 | LE71230392002046SGS00 | 16 December 2002 | 20.70 | LE71230392002350EDC00 |
19 March 2002 | 22.37 | LE71230392002078AGS00 | 17 January 2003 | 20.81 | LE71230392003017EDC00 |
12 April 2002 | 21.78 | LT51230392002102BJC00 | 18 February 2003 | 21.03 | LE71230392003049SGS00 |
7 April 2003 | 22.18 | LE71230392003097EDC00 | |||
15 April 2003 | 23.22 | LT51230392003105BJC00 | |||
1 May 2003 | 24.12 | LT51230392003121BJC00 |
Bars | Length (m) | Average Width (m) | Area (m2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Change | Percentage (%) | ||
NYZ | 3890 | 3620 | 770 | 820 | 2,990,600 | 2,984,100 | 6500 | −0.22 | |
JNXT | J1 | 4520 | 4750 | 290 | 210 | 1,298,300 | 972,500 | 325,800 | −25.09 |
J2 | 2030 | 2140 | 610 | 390 | 1,236,800 | 832,900 | 403,900 | −32.66 | |
NMZ | 9320 | 9320 | 1070 | 1050 | 10,003,500 | 9,751,500 | 252,000 | −2.52 | |
XZ | 4220 | 3190 | 1050 | 1180 | 4,418,200 | 3,751,300 | 666,900 | −15.09 | |
Total | - | - | - | - | 19,947,400 | 18,292,300 | 1,655,100 | −8.30 |
Period | NYZ | JNXT | NMZ | XZ | Total |
---|---|---|---|---|---|
Before | 14,666,800 | 12,196,600 | 49,284,100 | 20,419,700 | 96,567,200 |
After | 15,312,500 | 8,590,300 | 48,608,700 | 18,165,700 | 90,677,200 |
Changes | 645,700 | −3,606,300 | −675,300 | −2,254,000 | −5,890,000 |
Percentage (%) | 4.4 | −29.57 | −1.37 | −11.04 | −6.10 |
Bar | Acquired Date | River Stage (m) | Difference (m) | Area (m2) | Change (m2) | Error (%) |
---|---|---|---|---|---|---|
XZ | 7 February 2002 | 19.12 | 0.13 | 8,033,118 | 19,338 | 0.24 |
15 February 2002 | 18.99 | 8,052,456 | ||||
NMZ | 7 February 2002 | 19.12 | 0.13 | 11,450,077 | 22,594 | 0.20 |
15 February 2002 | 18.99 | 10,168,075 | ||||
NYZ | 7 February 2002 | 19.12 | 0.13 | 5,259,801 | 25,780 | 0.49 |
15 February 2002 | 18.99 | 5,285,581 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, H.; Cai, X. Remotely Sensed Analysis of Channel Bar Morphodynamics in the Middle Yangtze River in Response to a Major Monsoon Flood in 2002. Remote Sens. 2018, 10, 1165. https://doi.org/10.3390/rs10081165
Wang Z, Li H, Cai X. Remotely Sensed Analysis of Channel Bar Morphodynamics in the Middle Yangtze River in Response to a Major Monsoon Flood in 2002. Remote Sensing. 2018; 10(8):1165. https://doi.org/10.3390/rs10081165
Chicago/Turabian StyleWang, Zhaoyang, Hui Li, and Xiaobin Cai. 2018. "Remotely Sensed Analysis of Channel Bar Morphodynamics in the Middle Yangtze River in Response to a Major Monsoon Flood in 2002" Remote Sensing 10, no. 8: 1165. https://doi.org/10.3390/rs10081165
APA StyleWang, Z., Li, H., & Cai, X. (2018). Remotely Sensed Analysis of Channel Bar Morphodynamics in the Middle Yangtze River in Response to a Major Monsoon Flood in 2002. Remote Sensing, 10(8), 1165. https://doi.org/10.3390/rs10081165