Estimates of the Change in the Oceanic Precipitation Off the Coast of Europe due to Increasing Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observations
2.1.1. CPC PREC Data
2.1.2. CMAP Data
2.1.3. GPCP Data
2.2. RCMs Simulations
2.3. Averaging Method
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hartmann, D.L. Global Physical Climatology, 2nd ed.; Elsevier: Cambridge, MA, USA, 2016. [Google Scholar]
- Dickson, B.; Yashayaev, I.; Meincke, J.; Turrell, B.; Dye, S.; Holfort, J. Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 2002, 416, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.; Rudels, B.; Dye, S.; Karcher, M.; Meincke, J.; Yashayaev, I. Current estimates of freshwater flux through Arctic and subarctic seas. Prog. Oceanogr. 2007, 73, 210–230. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.A.; Kanzow, T.; Rayner, D.; Baringer, M.O.; Johns, W.E.; Marotzke, J.; Longworth, H.R.; Grant, E.M.; Hirschi, J.J.-M.; Beal, L.M.; et al. Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 2007, 317, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Brossier, C.L.; Béranger, K.; Drobinski, P. Ocean response to strong precipitation events in the Gulf of Lions (northwestern Mediterranean Sea): A sensitivity study. Ocean Dyn. 2012, 62, 213–226. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Kjellström, E.; Graham, L.P. Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Chassignet, E.P.; Schmitt, R.W.; Xu, X.; Wang, D. Salinification in the South China Sea Since Late 2012: A Reversal of the Freshening Since the 1990s. Geophys. Res. Lett. 2018, 45, 2744–2751. [Google Scholar] [CrossRef]
- Meier, H.E.M. Baltic Sea climate in the late twenty-first century: A dynamical downscaling approach using two global models and two emission scenarios. Clim. Dyn. 2006, 27, 39–68. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Cheng, G.; Hong, Y. Effects of 4D-Var data assimilation using remote sensing precipitation products in a WRF model over the complex terrain of an arid region river basin. Remote Sens. 2017, 9, 963. [Google Scholar] [CrossRef]
- Feser, F.; Rockel, B.; von Storch, H.; Winterfeldt, J.; Zahn, M. Regional Climate Models Add Value to Global Model Data: A Review and Selected Examples. Bull. Am. Meteorol. Soc. 2011, 92, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Marinucci, M.R.; Visconti, G. A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model 2. Climate change scenario. J. Geophys. Res. Atmos. 1992, 97, 10011–10028. [Google Scholar] [CrossRef]
- Kendon, E.J.; Jones, R.G.; Kjellström, E.; Murphy, J.M. Using and designing GCM-RCM ensemble regional climate projections. J. Clim. 2010, 23, 6485–6503. [Google Scholar] [CrossRef]
- Giorgi, F.; Bi, X.; Pal, J.S. Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Clim. Dyn. 2004, 22, 733–756. [Google Scholar] [CrossRef]
- Giorgi, F.; Bi, X.; Pal, J. Mean, interannual variability and trends in a regional climate change experiment over Europe. II: Climate change scenarios (2071–2100). Clim. Dyn. 2004, 23, 839–858. [Google Scholar] [CrossRef]
- Robertson, A.W.; Qian, J.-H.; Tippett, M.K.; Moron, V.; Lucero, A. Downscaling of Seasonal Rainfall over the Philippines: Dynamical versus Statistical Approaches. Mon. Weather Rev. 2012, 140, 1204–1218. [Google Scholar] [CrossRef]
- Choi, H., II. Application of a land surface model using remote sensing data for high resolution simulations of terrestrial processes. Remote Sens. 2013, 5, 6838–6856. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, G.; De Maeyer, P.; Cai, P.; Kurban, A. Improved atmospheric modelling of the oasis-desert system in central Asia using WRF with actual satellite products. Remote Sens. 2017, 9, 1273. [Google Scholar] [CrossRef]
- Déqué, M.; Jones, R.G.; Wild, M.; Giorgi, F.; Christensen, J.H.; Hassell, D.C.; Vidale, P.L.; Rockel, B.; Jacob, D.; Kjellström, E.; et al. Global high resolution versus Limited Area Model climate change projections over Europe: Quantifying confidence level from PRUDENCE results. Clim. Dyn. 2005, 25, 653–670. [Google Scholar] [CrossRef]
- Räisänen, J.; Hansson, U.; Ullerstig, A.; Döscher, R.; Graham, L.P.; Jones, C.; Meier, H.E.M.; Samuelsson, P.; Willén, U. European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios. Clim. Dyn. 2004, 22, 13–31. [Google Scholar] [CrossRef]
- Schoetter, R.; Hoffmann, P.; Rechid, D.; Schlünzen, K.H. Evaluation and bias correction of regional climate model results using model evaluation measures. J. Appl. Meteorol. Climatol. 2012, 51, 1670–1684. [Google Scholar] [CrossRef]
- Déqué, M.; Rowell, D.P.; Lüthi, D.; Giorgi, F.; Christensen, J.H.; Rockel, B.; Jacob, D.; Kjellström, E.; De Castro, M.; Van Den Hurk, B. An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Clim. Chang. 2007, 81, 53–70. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Sánchez, E.; Gaertner, M.A. Regional changes in precipitation in Europe under an increased greenhouse emissions scenario. Geophys. Res. Lett. 2007, 34, L06701. [Google Scholar] [CrossRef]
- Pal, J.S.; Giorgi, F.; Bi, X. Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- New, M.; Lister, D.; Hulme, M.; Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.D.; Osborn, T.J.J.; Lister, D.H.H. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Doherty, R.M.; Hulme, M.; Jones, C.G. A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974 to 1994. Int. J. Climatol. 1999, 19, 119–142. [Google Scholar] [CrossRef] [Green Version]
- Koster, R.D.; Suarez, M.J. Relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res. 1995, 100, 13775. [Google Scholar] [CrossRef]
- Chen, M.; Xie, P.; Janowiak, J.E.; Arkin, P.A.; Chen, M.; Xie, P.; Janowiak, J.E.; Arkin, P.A. Global Land Precipitation: A 50-yr Monthly Analysis Based on Gauge Observations. J. Hydrometeorol. 2002, 3, 249–266. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global precipitation : A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Reynolds, R.W. A Real-Time Global Sea Surface Temperature Analysis. J. Clim. 1988, 1, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Rudolf, B.; Schneider, U.; Keehn, P.R. Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Clim. 1995, 8, 1284–1295. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett. 2009, 36, L17808. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.M.; Yin, X.; Gruber, A. Variations in annual global precipitation (1979-2004), based on the Global Precipitation Climatology Project 2.5° analysis. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B.; Lopez, P.; van Meijgaard, E.; Botzet, M. The HIRHAM 4 regional atmospheric climate model 1996.
- Vidale, P.L. Predictability and uncertainty in a regional climate model. J. Geophys. Res. 2003, 108, 4586. [Google Scholar] [CrossRef]
- Lenderink, G.; Hurk, B.; Meijgaard, E.; Ulden, A.; Cuijpers, H. Simulation of Present-Day Climate in RACMO2: First Results and Model Developments. 2003. Available online: http://bibliotheek.knmi.nl/knmipubTR/TR252.pdf (accessed on 28 June 2018).
- Steppeler, J.; Doms, G.; Scḧattler, U.; Bitzer, H.W.; Gassmann, A.; Damrath, U.; Gregoric, G. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 2003, 82, 75–96. [Google Scholar] [CrossRef]
- Buonomo, E.; Jones, R.; Huntingford, C.; Hannaford, J. On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q. J. R. Meteorol. Soc. 2007, 133, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D. The role of water vapour in the atmosphere. A short overviewfrom a climate modeller’s point of view. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 523–527. [Google Scholar] [CrossRef]
- Castro, M.; Fernandez, C.; Gaertner, M.A. Description of a mesoscale atmospheric numerical model. In Mathematics, Climate and Environment; Diaz, J.I., Lions, J., Eds.; Masson: Paris, France, 1993; pp. 230–253. [Google Scholar]
- Döscher, R.; Willén, U.; Jones, C.; Rutgersson, A.; Meier, H.E.M.; Hansson, U.; Graham, L.P. The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environ. Res. 2002, 7, 183–192. [Google Scholar]
- Jones, C.; Carvalho, L.M.V.; Higgins, R.W.; Waliser, D.E.; Schemm, J.K.E. A statistical forecast model of tropical intraseasonal convective anomalies. J. Clim. 2004, 17, 2078–2095. [Google Scholar] [CrossRef]
- Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C. A regional climate model for northern Europe: Model description and results from the downscaling of two GCM control simulations. Clim. Dyn. 2001, 17, 339–359. [Google Scholar] [CrossRef]
- Pope, V.D.; Gallani, M.L.; Rowntree, P.R.; Stratton, R.A. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim. Dyn. 2000, 16, 123–146. [Google Scholar] [CrossRef]
- Nakićenović, N. Intergovernmental Panel on Climate Change. Working Group III; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rayner, N.A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Rowell, D.P. A scenario of European climate change for the late twenty-first century: Seasonal means and interannual variability. Clim. Dyn. 2005, 25, 837–849. [Google Scholar] [CrossRef]
- Christensen, J.H.; Carter, T.R.; Rummukainen, M.; Amanatidis, G. Evaluating the performance and utility of regional climate models: The PRUDENCE project. Clim. Chang. 2007, 81, 1–6. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F.; Huffman, G.J. Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Clim. Dyn. 2016, 46, 1091–1105. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Jiménez, A.; Moreno, R.; García-Ortega, E. Discrepancies with Satellite Observations in the Spatial Structure of Global Precipitation as Derived from Global Climate Models. Q. J. R. Meteorol. Soc. 2018. [Google Scholar] [CrossRef]
- Knist, S.; Goergen, K.; Buonomo, E.; Christensen, O.B.; Colette, A.; Cardoso, R.M.; Fealy, R.; Fernández, J.; García-Díez, M.; Jacob, D.; et al. Land-atmosphere coupling in EURO-CORDEX evaluation experiments. J. Geophys. Res. Atmos. 2017, 122, 79–103. [Google Scholar] [CrossRef] [Green Version]
- Mascaro, G.; Viola, F.; Deidda, R. Evaluation of Precipitation From EURO-CORDEX Regional Climate Simulations in a Small-Scale Mediterranean Site. J. Geophys. Res. Atmos. 2018, 123, 1604–1625. [Google Scholar] [CrossRef]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Precipitation intensity-duration-frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties. Atmos. Res. 2018, 200, 1–12. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Semedo, A. The impact of climate change on the Iberian low-level wind jet: EURO-CORDEX regional climate simulation. Tellus A Dyn. Meteorol. Oceanogr. 2018, 68. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Senatore, A. EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos. 2016, 121, 7710–7728. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef] [Green Version]
- Dalelane, C.; Früh, B.; Steger, C.; Walter, A. A pragmatic approach to build a reduced regional climate projection ensemble for Germany using the EURO-CORDEX 8.5 ensemble. J. Appl. Meteorol. Climatol. 2018, 57, 477–491. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
Dataset | Temporal Resolution | Spatial Aggregation | Geographical Coverage | Original Sources | Period Covered |
---|---|---|---|---|---|
Observations | |||||
CPC | Monthly | 2.5° × 2.5° | Global | Raingauge + EOFs | 1948–present |
CMAP | Monthly | 2.5° × 2.5° | Global | Satellite + Raingauge | 1979–present |
GPCP 1 | Daily | 2.5° × 2.5° | Global | Satellite + Raingauge | 1979–present |
Simulations | |||||
PRUDENCE | Daily | 0.5° × 0.5° | Europe | RCMs | 1960–1990 2070–2100 (A2) |
CPC 1 | GPCP 1 | CMAP 1 | HIR. | CHRM | RCAO | CLM | Had. | REMO | PRO. | RAC. | ⟨RCMs⟩ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ocean | Only | |||||||||||
CPC 1 | 1 | 0.866 | 0.808 | 0.775 | 0.8 | 0.645 | 0.836 | 0.625 | 0.743 | 0.804 | 0.667 | 0.822 |
GPCP 1 | 1 | 0.885 | 0.788 | 0.768 | 0.731 | 0.832 | 0.658 | 0.748 | 0.741 | 0.745 | 0.842 | |
CMAP 1 | 1 | 0.786 | 0.715 | 0.634 | 0.824 | 0.583 | 0.701 | 0.741 | 0.683 | 0.792 | ||
HIRHAM | 1 | 0.807 | 0.701 | 0.848 | 0.755 | 0.726 | 0.798 | 0.77 | 0.895 | |||
CHRM | 1 | 0.749 | 0.871 | 0.728 | 0.859 | 0.792 | 0.77 | 0.919 | ||||
RCAO | 1 | 0.725 | 0.742 | 0.822 | 0.655 | 0.918 | 0.889 | |||||
CLM | 1 | 0.685 | 0.783 | 0.808 | 0.772 | 0.907 | ||||||
HadRM3H | 1 | 0.717 | 0.704 | 0.782 | 0.854 | |||||||
REMO | 1 | 0.742 | 0.775 | 0.902 | ||||||||
PROMES | 1 | 0.719 | 0.863 | |||||||||
RACMO | 1 | 0.914 | ||||||||||
⟨RCMs⟩ | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapiador, F.J.; Navarro, A.; Marcos, C.; Moreno, R. Estimates of the Change in the Oceanic Precipitation Off the Coast of Europe due to Increasing Greenhouse Gas Emissions. Remote Sens. 2018, 10, 1198. https://doi.org/10.3390/rs10081198
Tapiador FJ, Navarro A, Marcos C, Moreno R. Estimates of the Change in the Oceanic Precipitation Off the Coast of Europe due to Increasing Greenhouse Gas Emissions. Remote Sensing. 2018; 10(8):1198. https://doi.org/10.3390/rs10081198
Chicago/Turabian StyleTapiador, Francisco J., Andrés Navarro, Cecilia Marcos, and Raúl Moreno. 2018. "Estimates of the Change in the Oceanic Precipitation Off the Coast of Europe due to Increasing Greenhouse Gas Emissions" Remote Sensing 10, no. 8: 1198. https://doi.org/10.3390/rs10081198
APA StyleTapiador, F. J., Navarro, A., Marcos, C., & Moreno, R. (2018). Estimates of the Change in the Oceanic Precipitation Off the Coast of Europe due to Increasing Greenhouse Gas Emissions. Remote Sensing, 10(8), 1198. https://doi.org/10.3390/rs10081198