Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Satellite Data and Preprocessing
2.3. Urban Landscape Classification
2.4. Retrieval and Ranking of Land Surface Temperature (LST)
2.5. Identification of Heat Source and Sink Landscapes
2.6. The LST Profile Analysis
2.7. Quantification of Landscape Pattern Metrics and LST
3. Results
3.1. Land Cover Changes and the LST of LULC Classes
3.2. Spatial Pattern of the LST
3.3. The Classification of Heat Source and Sink Landscapes
3.4. Effects of Heat Source and Sink Patterns on LST
4. Discussion
4.1. Urbanization and Its Effects on Urban Thermal Environment
4.2. The Relationships between the Heat Source–Sink Landscape Pattern and LST
4.3. Implications for UHI Mitigation
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, C.; Wu, C. Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sens. Environ. 2013, 131, 262–274. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S. Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 65–71. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Qian, Y.G.; Li, X.M.; Li, W.F.; Han, L.J. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Li, W.; Cao, Q.; Lang, K.; Wu, J. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature. Sci. Total Environ. 2017, 586, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Oke, T.R.; Hannel, F.G. The Form of the Urban Heat Island in Hamilton, Canada; Note No. 108, WMO No. 254 TP 141; WMO Technical: Geneva, Switzerland, 1970; pp. 113–126. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Reducing Urban Heat Islands: Compendium of Strategies; US Environmental Protection Agency: Washington, DC, USA, 2008.
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.; Liu, C.H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Anniballe, R.; Bonafoni, S.; Pichierri, M. Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sens. Environ. 2014, 150, 163–171. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Huang, N.; Wang, H.; Lin, T. Regulation framework of watershed landscape pattern for non-point source pollution control based on source-sink theory: A case study in the watershed of Maluan Bay, Xiamen City, China. Chin. J. Appl. Ecol. 2016, 27, 3325–3334. [Google Scholar]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Xiao, R.; Ouyang, Z.; Zheng, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Orlandini, S.; Raschi, A.; Maracchi, G.; Munafò, M. The impact of built-up surfaces on land surface temperatures in Italian urban areas. Sci. Total Environ. 2016, 551–552, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef]
- Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of urban heat islands (UHI) of Noida City: India using multi-temporal satellite data. Sustain. Cities Soc. 2016, 22, 19–28. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Canadell, J.G.; Kirschbaum, M.U.F.; Kurz, W.A.; Sanz, M.; Schlamadinger, B.; Yamagata, Y. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Pollut. 2007, 10, 370–384. [Google Scholar] [CrossRef]
- Lal, S. A study of the atmospheric photochemical loss of N2O based on trace gas measurements. Chemosphere Glob. Chang. Sci. 2000, 2, 455–463. [Google Scholar] [CrossRef]
- Chandrappa, R.; Kulshrestha, U.C. Sustainable Air Pollution Management; Air Quality Issues; Springer International Publishing: Berlin, Germany, 2016; pp. 49–107. [Google Scholar]
- Dai, E.; Huang, Y.; Wu, Z.; Zhao, D. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem. J. Geogr. Sci. 2016, 26, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Boughton, D.A. The dispersal system of a butterfly: A test of source-sink theory suggests the intermediate-scale hypothesis. Am. Nat. 2000, 156, 131–144. [Google Scholar] [PubMed]
- Chen, L.; Fu, B.; Zhao, W. Source-sink landscape theory and its ecological significance. Front. Biol. China 2008, 3, 131–136. [Google Scholar] [CrossRef]
- Xu, S. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale. Environ. Monit. Assess. 2009, 151, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.D.L. Seasonal and spatial variation of surface urban heat island intensity in a small urban agglomerate in Brazil. Climate 2016, 4, 61. [Google Scholar] [CrossRef]
- Sakakibara, Y.; Owa, K. Urban-rural temperature differences in coastal cities: Influence of rural sites. Int. J. Climatol. 2005, 25, 811–820. [Google Scholar] [CrossRef]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Min, M.; Zhao, H.; Miao, C. Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China. Sustainability 2018, 10, 1992. [Google Scholar] [CrossRef]
- Gong, M.; Yin, S.; Gu, X.; Xu, Y.; Jiang, N.; Zhang, R. Refined 2013-based vehicle emission inventory and its spatial and temporal characteristics in Zhengzhou, China. Sci. Total Environ. 2017, 599, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Stehman, A.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Jassen, L.I.F.; Frans, J.M.; Wel, V.D. Accuracy assessment of satellite derived land-cover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 410–432. [Google Scholar]
- Bonafoni, S. Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2019–2027. [Google Scholar] [CrossRef]
- Lo, C.P.; Quattrochi, D.A. Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogramm. Eng. Remote Sens. 2003, 69, 1053–1063. [Google Scholar] [CrossRef]
- Xu, D.; Chen, R. Comparison of urban heat island and urban reflection in Nanjing City of China. Sustain. Cities Soc. 2017, 31, 26–36. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Product Guide: Provisional Landsat 8 Surface Reflectance Product; Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2016.
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Majumdar, D.D.; Biswas, A. Quantifying land surface temperature change from LISA clusters: An alternative approach to identifying urban land use transformation. Landsc. Urban Plan. 2016, 153, 51–65. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Markham, B.L.; Barker, J.K. Spectral characteristics of the LANDSAT Thematic Mapper sensors. Int. J. Remote Sens. 1985, 6, 697–716. [Google Scholar] [CrossRef]
- Smith, R.M. Comparing Traditional Methods for Selecting Class Intervals on Choropleth Maps. Prof. Geogr. 1986, 38, 62–67. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Seasonal Variations in the Relationship between Landscape Pattern and Land Surface Temperature in Indianapolis, USA. Environ. Monit. Assess. 2008, 144, 199–219. [Google Scholar] [CrossRef] [PubMed]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 25 March 2018).
- Wu, H.; Ye, L.P.; Shi, W.Z.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 67–78. [Google Scholar] [CrossRef]
- RivaMurray, K.; Riemann, R.; Murdoch, P.; Fischer, J.M.; Brightbill, R. Landscape characteristics affecting streams in urbanizing regions of the DelawareRiver Basin (New Jersey, New York, and Pennsylvania, U.S.). Landsc. Ecol. 2010, 25, 1489–1503. [Google Scholar] [CrossRef]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting landscape metrics as indicators of spatial heterogeneityA comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Mu, B.; Mayer, A.L.; He, R.; Tian, G. Land use dynamics and policy implications in Central China: A case study of Zhengzhou. Cities 2016, 58, 39–49. [Google Scholar] [CrossRef]
- Duan, J.; Song, X.; Zhang, X. Spatiotemporal variation of urban heat island in Zhengzhou City based on RS. Chin. J. Appl. Ecol. 2011, 22, 165–170. [Google Scholar]
- Yao, R.; Wang, L.; Huang, X.; Niu, Z.; Liu, F.; Wang, Q. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Sci. Total Environ. 2017, 609, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Qiu, X.F.; Gu, L.H.; He, Y.J.; Wang, K.F. The urban heat island in Nanjing. Quat. Int. 2009, 208, 38–43. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, R. Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou City, China. Habitat Int. 2010, 34, 228–235. [Google Scholar] [CrossRef]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically weighted regression of the urban heat island of a small city. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Schatz, J.; Kucharik, C.J. Seasonality of the urban heat island effect in Madison, Wisconsin. J. Appl. Meteorol. Clim. 2014, 53, 2371–2386. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Takebayashi, H.; Senoo, M. Analysis of the relationship between urban size and heat island intensity using WRF model. Urban Clim. 2018, 24, 287–298. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; Presciutti, A.; Anderini, E.; Filipponi, M.; Nicolini, A.; Rossi, F. Experimental analysis of the effect of geometry and façade materials on urban district’s equivalent albedo. Sustainability 2017, 9, 1245. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; Presciutti, A.; Filipponi, M.; Nicolini, A.; Rossi, F. Optic-energy performance improvement of exterior paints for buildings. Energy Build. 2017, 139, 690–701. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; De Ciantis, S.; Anderini, E.; Rossi, F. Planning for cooler urban canyons: Comparative analysis of the influence of facades reflective properties on urban canyon thermal behavior. Sol. Energy 2018, 162, 14–27. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Akbari, H. The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago. Climate 2018, 6, 19. [Google Scholar] [CrossRef]
- Fallmann, J.; Forkel, R.; Emeis, S. Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ. 2016, 125, 199–211. [Google Scholar] [CrossRef]
- Touchaei, A.G.; Akbari, H.; Tessum, C.W. Effects of increasing urban albedo on meteorology and air quality Montreal (Canada)-Episodic simulation of heat wave in 2005. Atmos. Environ. 2016, 132, 188–206. [Google Scholar] [CrossRef]
- Synnefa, A.; Dandou, A.; Santamouris, M.; Tombrou, M. On the use of cool materials as a heat island mitigation strategy. J. Appl. Meteorol. Climatol. 2008, 47, 2846–2856. [Google Scholar] [CrossRef]
- Hoag, H. How cities can beat the heat. Nature 2015, 524, 402–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, W.H.; Chi, W.F.; Lu, D.S.; Dou, Y.Y. A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Wu, W.J.; Zhao, S.Q.; Zhu, C.; Jiang, J.L. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Powell, S.; Cohen, W.; Yang, Z.; Pierce, J.; Alberti, M. Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972 to 2006. Remote Sens. Environ. 2008, 112, 1895–1908. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GISci. Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W.; Wang, Z.; Song, J. Spatio-temporal modeling of the urban heat island in the Phoenix metropolitan area: Land use change implications. Remote Sens. 2016, 8, 8. [Google Scholar] [CrossRef]
On-Board Sensor | Acquisition Date | Path/Row | Source |
---|---|---|---|
Landsat TM | 20 May 1996 | 124/36 | http://glovis usgs.gov/ |
Landsat TM | 16 May 2006 | 124/36 | |
Landsat OLI/TIRS | 27 May 2014 | 124/36 |
LST Level | Division |
---|---|
Low | TS ≤ Tmean − 2std |
Sub-low | Tmean − 2 std < TS ≤ Tmean − 0.5 std |
Medium | Tmean − 0.5 std < TS ≤ Tmean + 0.5 std |
Sub-high | Tmean + 0.5 std < TS ≤ Tmean + 2 std |
High | TS > Tmean + 2std |
Level | Category | Metric |
---|---|---|
Landscape level | Composition | Patch density (PD) |
Shape | Landscape shape index (LSI) | |
Spatial configuration | Contagion (CONTAG) | |
Shannon diversity index (SHDI) | ||
Class level | Composition | Percent cover of class area (PLAND) |
Patch density (PD) | ||
Shape | Edge density (ED) | |
Mean shape index (SHAPE_MN) | ||
Mean fractal dimension index (FRAC_MN) | ||
Spatial configuration | Landscape division index (DIVISION) | |
Aggregation index (AI) |
Land Cover | 1996–2006 | 2006–2014 | ||
---|---|---|---|---|
Mean LST (°C) | SD LST (°C) | Mean LST (°C) | SD LST (°C) | |
Impervious surface | 28.204 | 1.511 | 30.583 | 1.439 |
Bare land | 27.956 | 2.193 | 28.817 | 2.274 |
Forest | 24.851 | 1.160 | 24.732 | 1.079 |
Water | 22.872 | 0.761 | 23.175 | 0.835 |
Farmland | 26.041 | 1.642 | 26.005 | 1.744 |
Grassland | 24.867 | 1.663 | 25.158 | 1.693 |
Year | Indicator | 1st Ring Road | 2nd Ring Road | 3rd Ring Road | 4th Ring Road | The Whole Study Area |
---|---|---|---|---|---|---|
1996 | Max LST | 36.96 | 40.44 | 40.83 | 40.82 | 40.83 |
Min LST | 27.11 | 13.24 | 13.24 | 13.23 | 13.24 | |
Mean LST | 32.73 | 32.67 | 31.10 | 29.96 | 29.24 | |
2006 | Max LST | 38.11 | 42.35 | 42.37 | 44.97 | 44.97 |
Min LST | 26.13 | 24.71 | 21.18 | 12.05 | 12.05 | |
Mean LST | 32.63 | 32.64 | 31.84 | 30.58 | 30.04 | |
2014 | Max LST | 39.87 | 41.71 | 45.28 | 45.28 | 45.28 |
Min LST | 28.28 | 28.28 | 24.19 | 20.06 | 18.84 | |
Mean LST | 33.59 | 33.51 | 33.49 | 33.59 | 31.96 |
Year | Indicator | 1st Ring Road | 2nd Ring Road | 3rd Ring Road | 4th Ring Road |
---|---|---|---|---|---|
1996 | Percentage of heat source area | 97.16 | 89.14 | 57.91 | 38.34 |
Percentage of heat sink area | 2.84 | 10.86 | 42.09 | 61.66 | |
CI of heat source | 0.263 | 1.479 | 1.451 | 0.773 | |
CI of heat sink | −0.005 | −0.091 | −0.525 | −0.615 | |
LI | 0.019 | 0.061 | 0.361 | 0.796 | |
2006 | Percentage of heat source area | 86.59 | 86.66 | 69.06 | 48.65 |
Percentage of heat sink area | 13.41 | 13.34 | 30.93 | 51.34 | |
CI of heat source | 2.431 | 1.771 | 2.225 | 1.609 | |
CI of heat sink | −0.085 | −0.068 | −0.199 | −0.339 | |
LI | 0.034 | 0.038 | 0.089 | 0.211 | |
2014 | Percentage of heat source area | 96.03 | 96.36 | 90.31 | 79.32 |
Percentage of heat sink area | 3.97 | 3.67 | 9.69 | 20.68 | |
CI of heat source | 2.431 | 1.849 | 2.129 | 1.909 | |
CI of heat sink | −0.051 | −0.034 | −0.114 | −0.25 | |
LI | 0.021 | 0.019 | 0.054 | 0.131 |
LST Acquired Year | CONTAG | LSI | PD | SHDI | |
---|---|---|---|---|---|
Heat sink | 1996 | −0.296 * | −0.261 * | −0.201 * | −0.214 ** |
2006 | −0.328 * | −0.331 ** | −0.352 ** | −0.344 ** | |
2014 | −0.481 ** | −0.495 ** | −0.551 ** | −0.498 ** | |
Heat source | 1996 | 0.217 * | 0.246 ** | 0.293 ** | 0.293 ** |
2006 | 0.323 ** | 0.398 * | 0.316 * | 0.378 ** | |
2014 | 0.435 ** | 0.451 ** | 0.554 ** | 0.479 ** |
1996 | 2006 | 2014 | ||||
---|---|---|---|---|---|---|
Heat Sink | Heat Source | Heat Sink | Heat Source | Heat Sink | Heat Source | |
AI | −0.245 ** | 0.235 ** | −0.313 ** | 0.369 ** | −0.423 ** | 0.405 ** |
DIVISION | −0.221 ** | 0.296 ** | −0.336 ** | 0.464 ** | −0.475 ** | 0.515 ** |
ED | −0.240 ** | 0.012 | −0.398 ** | 0.015 * | −0.454 ** | 0.005 * |
PD | −0.280 ** | 0.278 ** | −0.377 ** | 0.378 ** | −0.515 ** | 0.587 ** |
PLAND | −0.285 ** | 0.236 ** | −0.342 ** | 0.479 ** | −0.529 ** | 0.559 ** |
FRAC_MN | −0.234 ** | 0.227 ** | −0.380 ** | 0.357 ** | −0.420 ** | −0.410 ** |
SHAPE_MN | −0.223 ** | 0.221 ** | −0.276 ** | 0.388 ** | −0.326 ** | 0.415 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhang, H.; Miao, C.; Ye, X.; Min, M. Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China. Remote Sens. 2018, 10, 1268. https://doi.org/10.3390/rs10081268
Zhao H, Zhang H, Miao C, Ye X, Min M. Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China. Remote Sensing. 2018; 10(8):1268. https://doi.org/10.3390/rs10081268
Chicago/Turabian StyleZhao, Hongbo, Hao Zhang, Changhong Miao, Xinyue Ye, and Min Min. 2018. "Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China" Remote Sensing 10, no. 8: 1268. https://doi.org/10.3390/rs10081268
APA StyleZhao, H., Zhang, H., Miao, C., Ye, X., & Min, M. (2018). Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China. Remote Sensing, 10(8), 1268. https://doi.org/10.3390/rs10081268