Economic Assessment of Fire Damage to Urban Forest in the Wildland–Urban Interface Using Planet Satellites Constellation Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Fire of November 2016
3. Data and Methods
3.1. Satellite Images
3.2. Vegetation Indices
3.2.1. NDVI
3.2.2. GNDVI
3.2.3. GCC
3.3. Using MODIS NDVI Time Series to Track Vegetation Phenology
3.4. Field Survey
3.5. Deriving Tree Density and DBH Maps from Calibrated Satellite Data
3.6. Deriving Aboveground Woody Biomass from Vegetation Indices
3.7. Burn Severity Classification Using Vegetation Indices
3.8. Assessing Burned Trees and Woody Biomass Loss in the Fire Area
3.9. Use of Economic Model to Evaluate Fire Damage in WUI
- The Thiessen polygons method [62] was applied to derive tree species distribution within the burnt area by using the tree species distribution assessed at the 212 field plots. Then, a fSpecVal layer was derived for the entire burnt area at the Thiessen polygons resolution.
- The fLocVal layer was produced by determining specific fLocVal value for each Thiessen polygon through the use of a zoning map of Haifa (http://gis.haifa.muni.il/haifa_html5/) and a pre-fire aerial photograph taken in 2016 (Figure A2). Whenever uncertainty regarding the proper fLocVal value occurred, we consulted Mr. Israel Galon, the director of the Department of Flowers and Plant Engineering in MOAG, previously the director of the forestry services in MOAG; Mr. Galon led the adaptation of i-Tree to the Israeli forest system.
- Canopy condition were determined for each tree per plot using a pre-fire very-high-spatial resolution aerial photograph. This was then used to assign the fCanopCondVal for each Thiessen polygon, as described above.
3.10. Accuracy Assessment and Estimated Uncertainty
4. Results
4.1. Stand Tree Density and Woody Biomass in Haifa’s Wildland-Urban Interface Area
4.2. Burn Severity
4.3. Environmental and Economic Damages of the Fire
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Tree Species | Trees per Plot | From Total (%) | DBH (cm) | Density (103 trees ha−1) |
---|---|---|---|---|
Acer obtusifolium Sm. | 2 | 0.30 | 10.0 | 14.9 |
Ailanthus altissima (Mill.) Swingle | 15 | 2.3 | 15.3 | 111.2 |
Albizia lebbeck (L.) Benth | 2 | 0.3 | 17.5 | 14.9 |
Arbutus andrachne L. | 4 | 5.6 | 10.0 | 37.1 |
Casuarina equisetifolia L. | 34 | 5.1 | 28.1 | 251.9 |
Ceratonia siliqua L. | 1 | 0.2 | 26.0 | 7.5 |
Cercis siliquastrum L. | 5 | 0.8 | 19.4 | 37.1 |
Crataegus azarolus L. | 4 | 0.6 | 12.8 | 29.0 |
Cupressus sempervirens L. | 108 | 16.3 | 19.4 | 800.0 |
Dalbergia sissoo Roxb. | 2 | 0.3 | 32.5 | 14.8 |
Eucalyptus camaldulensis Dehn. | 34 | 5.1 | 36.7 | 251.9 |
Euphorbia tirucalli L. | 2 | 0.3 | 19.5 | 14.9 |
Laurus nobilis L. | 15 | 2.3 | 10.6 | 112.0 |
Melia azedarach L. | 5 | 0.8 | 15.2 | 37.0 |
Olea europaea L. | 4 | 0.6 | 13.5 | 29.7 |
Phoenix dactylifera L. | 1 | 0.2 | 7.5 | |
Pinus brutia Ten. | 31 | 4.2 | 26.7 | 229.7 |
Pinus halepensis Mill. | 172 | 25.9 | 27.4 | 127.4 |
Pinus pinea L. | 6 | 0.9 | 28.3 | 44.5 |
Pistacia palaestina Boiss. | 28 | 25.9 | 9.7 | 207.5 |
Quercus calliprinos Webb. | 138 | 20.8 | 12.7 | 1022.3 |
Rhamnus alaternus L. | 36 | 5.4 | 7.8 | 266.7 |
Rhamnus lycioides L. | 3 | 0.5 | 9.0 | 22.9 |
Ulmus minor Mill. | 5 | 0.8 | 13.4 | 37.0 |
Washingtonia robusta H.Wendl | 2 | 0.3 | 32.5 | 14.9 |
Ailanthus altissima (Mill.) Swingle | 7 | 3.1 | 12.4 | 91.0 |
Casuarina equisetifolia L. | 4 | 1.8 | 53.8 | 52.0 |
Ceratonia siliqua L. | 10 | 4.4 | 24.4 | 12.9 |
Cupressus sempervirens L. | 4 | 1.8 | 19.5 | 52.0 |
Laurus nobilis L. | 10 | 4.4 | 20.3 | 12.9 |
Olea europaea L. | 2 | 0.9 | 15.0 | 26.0 |
Pinus canariensis C. Smith | 1 | 0.4 | 35.0 | 13.0 |
Pinus halepensis Mill. | 87 | 38.5 | 23.1 | 1129.9 |
Pinus pinea L. | 48 | 21.2 | 24.4 | 623.4 |
Pistacia palaestina Boiss. | 1 | 0.4 | 32.0 | 13.0 |
Quercus calliprinos Webb. | 51 | 22.6 | 14.4 | 624.2 |
Rhamnus alaternus L. | 1 | 0.4 | 12.0 | 13.0 |
References
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 201718850. [Google Scholar] [CrossRef] [PubMed]
- Mitsopoulos, I.; Mallinis, G.; Arianoutsou, M. Wildfire Risk Assessment in a Typical Mediterranean Wildland–Urban Interface of Greece. Environ. Manag. 2015, 55, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Tedim, F.; Xanthopoulos, G.; Leone, V. Chapter 5—Forest Fires in Europe: Facts and Challenges. In Paton Risks and Disasters; Elsevier: Oxford, UK, 2015; pp. 77–99. ISBN 978-0-12-410434-1. [Google Scholar]
- Mercer, D.E.; Zipperer, W. Fire in the Wildland–Urban Interface. In Urban–Rural Interfaces: Linking People and Nature; American Society of Agronomy, Soil Science Society of America, Crop Science Society of America, Inc.: Madison, WI, USA, 2012; pp. 287–303. ISBN 978-0-89118-616-8. [Google Scholar]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Wittenberg, L.; Kutiel, H. Dryness in a Mediterranean-type climate—Implications for wildfire burnt area: A case study from Mount Carmel, Israel. Int. J. Wildl. Fire 2016, 25, 579–591. [Google Scholar] [CrossRef]
- Gitas, I.; Mitri, G.; Polychronaki, A. Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring—A Review. Remote Sens. Biomass Princ. Appl. 2012, 143–176. [Google Scholar] [CrossRef]
- Pincetl, S.; Bunje, P.; Holmes, T. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 2012, 107, 193–202. [Google Scholar] [CrossRef]
- Leblon, B.; Bourgeau-Chavez, L.; San-Miguel-Ayanz, J. Use of Remote Sensing in Wildfire Management. Sustain. Dev. Auth. Lead. Edge Content Environ. Manag. 2012. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Heimowitz, A. Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens. Environ. 2012, 126, 12–26. [Google Scholar] [CrossRef]
- Levin, N.; Tessler, N.; Smith, A.; McAlpine, C. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel. Environ. Manag. 2016, 58, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Eidenshink, J.C.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S.M. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Zhu, Z.; Key, C.; Ohlen, D.; Benson, N. Evaluate Sensitivities of Burn-Severity Mapping Algorithms for Different Ecosystems and Fire Histories in the United States; Final Report to the Joint Fire Sciences Program, JFSP 01-1-4-12; Joint Fire Science Program: Boise, IA, USA, 2006. [Google Scholar]
- Gouveia, C.; DaCamara, C.C.; Trigo, R.M. Post-fire vegetation recovery in Portugal based on spot/vegetation data. Nat. Hazards Earth Syst. Sci. 2010, 10, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Meng, R.; Dennison, P.E.; Huang, C.; Moritz, M.A.; D’Antonio, C. Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens. Environ. 2015, 171, 311–325. [Google Scholar] [CrossRef]
- Stefanidou, A.; Dragozi, E.; Stavrakoudis, D.; Gitas, I.Z. Fuel type mapping using object-based image analysis of DMC and Landsat-8 OLI imagery. Geocarto Int. 2017, 6049, 1–20. [Google Scholar] [CrossRef]
- Wickramasinghe, C.H.; Jones, S.; Reinke, K.; Wallace, L. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sens. 2016, 8, 932. [Google Scholar] [CrossRef]
- Chowdhury, E.H.; Hassan, Q.K. Development of a new daily-scale forest fire danger forecasting system using remote sensing data. Remote Sens. 2015, 7, 2431–2448. [Google Scholar] [CrossRef]
- Fernández-García, V.; Santamarta, M.; Fernández-Manso, A.; Quintano, C.; Marcos, E.; Calvo, L. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens. Environ. 2018, 206, 205–217. [Google Scholar] [CrossRef]
- Picotte, J.J.; Peterson, B.; Meier, G.; Howard, S.M. 1984–2010 trends in fire burn severity and area for the conterminous US. Int. J. Wildl. Fire 2016, 25, 413–420. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Brook, A.; Wittenberg, L.; Kopel, D.; Polinova, M.; Roberts, D.; Ichoku, C.; Shtober-Zisu, N. Structural heterogeneity of vegetation fire ash. L. Degrad. Dev. 2018, 29, 2208–2221. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Tessler, N.; Osem, Y. A phenology-based method for monitoring woody and herbaceous vegetation in Mediterranean forests from NDVI time series. Remote Sens. 2015, 7, 12314–12335. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildl. Fire 2010, 19, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.D.; Brewster, K.; Green, T.M.; Serbin, S.P. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef]
- Molina Martínez, J.R.; Soto, M.C.; Rodríguez y Silva, F. Determining the economic damage and losses of wildfires using MODIS remote sensing images. In Determining the Economic Damage and Losses of Wildfires Using MODIS Remote Sensing Images; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; ISBN 978-989-26-0884-6. [Google Scholar]
- Edwards, A.C.; Russell-Smith, J.; Maier, S.W. A comparison and validation of satellite-derived fire severity mapping techniques in fire prone north Australian savannas: Extreme fires and tree stem mortality. Remote Sens. Environ. 2018, 206, 287–299. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. 8.30 Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildl. Fire 2014, 23, 1045–1060. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, F.M. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef]
- Central Bureau of Statistics (2017) Population Census 2017. Israel Central Bureau of Statistics. p. 68. Available online: http://www.cbs.gov.il/reader/shnaton/templ_shnaton.html?num_tab=st02_24&CYear=2017 (accessed on 23 July 2018).
- HP (2009) Haifa municipality urban plan HP2000. p. 86. (In Hebrew). Available online: http:// www1.haifa.muni.il/mitar/chapters/chap2.pdf (accessed on 4 August 2018).
- Keinon, H. Fires now under control, says Public Security Minister. Jerusalem Post News, 24 November 2016. Available online: https://www.jpost.com/Israel-News/Fires-continue-to-rage-across-Israel-473517 (accessed on 9 September 2018).
- Toledo, T.; Marom, I.; Grimberg, E.; Bekhor, S. Analysis of evacuation behavior in a wildfire event. Int. J. Disaster Risk Reduct. 2018. [Google Scholar] [CrossRef]
- Tessler, N.; Borger, H.; Rave, E.; Argaman, E.; Wittenberg, E.; Kopel, L.; Brok, D.; Elkabets, A.; Abbas, E.; Vig, B.; et al. Haifa fire restoration project—Urban forest management- a case study. Int. J. Wildl. Fire 2018. under review. [Google Scholar]
- Müller-Wilm, U. Sentinel-2 MSI—Level-2A Prototype Processor Installation and User Manual 2016. Available online: https://step.esa.int/thirdparties/sen2cor/2.2.1/S2PAD-VEGA-SUM-0001-2.2.pdf (accessed on 1 November 2017).
- Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 2018, 618, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Sp. Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. Sentinel-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Brown, L.A.; Dash, J.; Ogutu, B.O.; Richardson, A.D. On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products. Agric. For. Meteorol. 2017, 247, 280–292. [Google Scholar] [CrossRef]
- Keenan, T.F.; Darby, B.; Felts, E.; Sonnentag, O.; Friedl, M.A.; Hufkens, K.; O’Keefe, J.; Klosterman, S.; Munger, J.W.; Toomey, M.; et al. Tracking forest phenology and seasonal physiology using digital repeat photography: A critical assessment. Ecol. Appl. 2014, 24, 1478–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weil, G.; Lensky, I.M.; Levin, N. Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology of Mediterranean woody species. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 88–101. [Google Scholar] [CrossRef]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of Unmanned Aerial Systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Leduc, M.B.; Knudby, A.J. Mapping wild leek through the forest canopy using a UAV. Remote Sens. 2018, 10, 70. [Google Scholar] [CrossRef]
- Weil, G.; Lensky, M.I.; Resheff, S.Y.; Levin, N. Optimizing the Timing of Unmanned Aerial Vehicle Image Acquisition for Applied Mapping of Woody Vegetation Species Using Feature Selection. Remote Sens. 2017, 9, 1130. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.H.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1974.
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Helman, D.; Mussery, A.; Lensky, I.M.; Leu, S. Detecting changes in biomass productivity in a different land management regimes in drylands using satellite-derived vegetation index. Soil Use Manag. 2014, 30, 32–39. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Mussery, A.; Leu, S. Rehabilitating degraded drylands by creating woodland islets: Assessing long-term effects on aboveground productivity and soil fertility. Agric. For. Meteorol. 2014, 195–196, 52–60. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellites Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018. under review. [Google Scholar]
- Neary, D.; Ryan, K.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soil and Water; Gen. Tech. Rep. RMRS-GTR-32-vol. 4; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4, pp. 250–251.
- Parsons, A.; Robichaud, P.; Lewis, S.; Napper, C. Field Guide for Mapping Post-fire Soil Burn Severity; Gen. Tech. Report, RMRS-GTR-243; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010.
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M.; et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Chang. Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Meigs, G.W.; Donato, D.C.; Campbell, J.L.; Martin, J.G.; Law, B.E. Forest Fire Impacts on Carbon Uptake, Storage, and Emission: The Role of Burn Severity in the Eastern Cascades, Oregon. Ecosystems 2009, 12, 1246–1267. [Google Scholar] [CrossRef]
- De Santis, A.; Asner, G.P.; Vaughan, P.J.; Knapp, D.E. Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sens. Environ. 2010, 114, 1535–1545. [Google Scholar] [CrossRef]
- Garcia, M.; Saatchi, S.; Casas, A.; Koltunov, A.; Ustin, S.; Ramirez, C.; Garcia-Gutierrez, J.; Balzter, H. Quantifying biomass consumption and carbon release from the California Rim fire by integrating airborne LiDAR and Landsat OLI data. J. Geophys. Res. Biogeosci. 2017, 122, 340–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Nordhaus, W.D. A Review of the Stern Review on the Economics of Climate Change. J. Econ. Lit. 2007, 45, 686–702. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System; Gen. Tech. Rep. USDA Forest Service RMRS-GTR-164-CD; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.
- Zhunqiao, L.; Haibo, H.; Hua, Y.; Xi, Y.; Hualei, Y.; Cunxin, R.; Yan, W.; Jianwu, T. Relationship between leaf physiologic traits and canopy color indices during the leaf expansion period in an oak forest. Ecosphere 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Holden, Z.A.; Morgan, P.; Smith, A.M.S.; Vierling, L. Beyond Landsat: A comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA. Int. J. Wildl. Fire 2010, 19, 449–458. [Google Scholar] [CrossRef]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock volume and sentinel-2 imagery in a mediterranean forest ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [Google Scholar] [CrossRef]
- Gómez, C.; Wulder, M.A.; Montes, F.; Delgado, J.A. Modeling forest structural parameters in the mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART). Remote Sens. 2012, 4, 135–159. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Yu, X.; Shen, G. Spatial estimation of urban forest structures with Landsat TM data and field measurements. Urban For. Urban Green. 2015, 14, 336–344. [Google Scholar] [CrossRef]
- Cullen, S. “Tree appraisal: What is the trunk formula method (9th ed.)?” Arboricultural Consultant Summer, 7–8. 2000. Available online: http://www.tree-tech.com/reports/tree_appraisal.xhtml (accessed on 23 July 2018).
- McPherson, E.G. Benefit-based tree valuation. Arboric. Urban For. 2007, 33, 1–11. [Google Scholar] [CrossRef]
- Grande-Ortiz, M.A.; Ayuga-Téllez, E.; Contato-Carol, M.L. Methods of tree appraisal: A review of their features and application possibilities. Arboric. Urban For. 2012, 38, 130–140. [Google Scholar]
- McPherson, G.; Simpson, J.R.; Peper, P.J.; Maco, S.E.; Xiao, Q. Municipal forest benefits and costs in five US cities. J. For. 2005, 103, 411–416. [Google Scholar]
- Nowak, D.J.; Dwyer, J.F. Understanding the Benefits and Costs of Urban Forest Ecosystems. In Urban and Community Forestry in the Northeast; Kuser, J.E., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 25–46. ISBN 978-1-4020-4289-8. [Google Scholar]
Band | Planet Scope 3-m (nm) | Sentinel-2A 10-m (nm) |
---|---|---|
Blue | 455–515 | 448–546 |
Green | 500–590 | 537–583 |
Red | 590–670 | 545–583 |
NIR | 780–860 | 763–909 |
Index | Formulation | Reference |
---|---|---|
NDVI 1 | [48] | |
GNDVI 2 | [49] | |
GCC 3 | [50] |
Satellite | Before | After | |||
---|---|---|---|---|---|
Date 1 | Date 2 | Date 3 | Date 4 | Date 5 | |
Sentinel-2A | 13 September 2016 | 13 October 2016 | 12 November 2016 | 22 November 2016 | 11 January 2017 |
Planet | 23 August 2016 | 13 October 2016 | 12 November 2016 | 21 November 2016 | 5 December 2016 |
Planet | Sentinel-2A | |||||
---|---|---|---|---|---|---|
Date | NDVI | GNDVI | GCC | NDVI | GNDVI | GCC |
Tree density | ||||||
22 November 2016 | 0.45 | 0.26 | 0.49 | 0.54 | 0.41 | 0.62 |
12 November 2016 | 0.27 | 0.27 | 0.45 | 0.55 | 0.42 | 0.64 |
13 October 2016 | 0.47 | 0.50 | 0.56 | 0.51 | 0.47 | 0.56 |
23 August 2016 | 0.54 | 0.55 | 0.65 | 0.58 | 0.50 | 0.59 |
AVG | 0.43 | 0.40 | 0.53 | 0.54 | 0.45 | 0.60 |
DBH | ||||||
22 November 2016 | 0.23 | 0.24 | 0.30 | 0.29 | 0.22 | 0.29 |
12 November 2016 | 0.27 | 0.27 | 0.36 | 0.31 | 0.25 | 0.37 |
13 October 2016 | 0.22 | 0.29 | 0.35 | 0.35 | 0.37 | 0.31 |
23 August 2016 | 0.37 | 0.39 | 0.48 | 0.31 | 0.27 | 0.32 |
AVG | 0.28 | 0.30 | 0.37 | 0.31 | 0.28 | 0.33 |
Domain | Stand Density (trees ha−1) | AGB (ton ha−1) | ||
---|---|---|---|---|
Mean | std | Mean | std | |
UR | 414.85 | 160.69 | 20.43 | 27.64 |
WLD | 222.42 | 165.27 | 5.30 | 13.47 |
WLD + UR | 318.63 | 162.98 | 10.21 | 20.48 |
Reference Data | ||||
---|---|---|---|---|
Classifier Results | Low | Moderate | High | Producer Accuracy (Precision) |
Low | 93.7 | 6.3 | 0.0 | 93.7 |
Moderate | 20.1 | 70.5 | 9.4 | 70.5 |
High | 0.0 | 20.4 | 79.5 | 79.5 |
User Accuracy (Recall) | 93.8 | 66.3 | 86.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, Y.; Lensky, I.M.; Brenner, S.; Tchetchik, A.; Tessler, N.; Helman, D. Economic Assessment of Fire Damage to Urban Forest in the Wildland–Urban Interface Using Planet Satellites Constellation Images. Remote Sens. 2018, 10, 1479. https://doi.org/10.3390/rs10091479
Michael Y, Lensky IM, Brenner S, Tchetchik A, Tessler N, Helman D. Economic Assessment of Fire Damage to Urban Forest in the Wildland–Urban Interface Using Planet Satellites Constellation Images. Remote Sensing. 2018; 10(9):1479. https://doi.org/10.3390/rs10091479
Chicago/Turabian StyleMichael, Yaron, Itamar M. Lensky, Steve Brenner, Anat Tchetchik, Naama Tessler, and David Helman. 2018. "Economic Assessment of Fire Damage to Urban Forest in the Wildland–Urban Interface Using Planet Satellites Constellation Images" Remote Sensing 10, no. 9: 1479. https://doi.org/10.3390/rs10091479
APA StyleMichael, Y., Lensky, I. M., Brenner, S., Tchetchik, A., Tessler, N., & Helman, D. (2018). Economic Assessment of Fire Damage to Urban Forest in the Wildland–Urban Interface Using Planet Satellites Constellation Images. Remote Sensing, 10(9), 1479. https://doi.org/10.3390/rs10091479