Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Data
- Raw images (Corona and aerial imagery): unprocessed. The metadata of Corona contained the entity ID (mission and frame numbers), acquisition date, camera type (aft/forward/cartographic/vertical), and camera resolution (stereo medium/stereo high/vertical low/vertical medium/vertical high). The metadata of aerial imagery implied flight and frame numbers, and acquisition date.
- Standard (WV2 2016 for Ural, WV3 2016 for and QB2 2005 for Yamal): the imagery was radiometrically corrected, sensor corrected, and map projected, normalized for topographic relief with respect to the reference ellipsoid applying a coarse DEM.
- Ortho Ready Standard (QB2 2005, WV1 2012 and WV2 2013 for Ural): the imagery was radiometrically corrected, sensor corrected, and map projected, had no topographic relief being applied with respect to the reference ellipsoid, making it suitable for orthorectification.
3.2. Fieldwork
3.3. Georeferencing and Orthorectification
3.4. Coastline Tracing and Quantitative Assessment of Coastal Dynamics
3.5. Uncertainty Assessment
- spatial resolution of the imagery (δs);
- relative georeferencing of two datasets to each other (δr); and,
- topography-induced horizontal displacement (δot, δt, δat).
3.6. Hydrometeorological Stress Calculation
4. Results
4.1. Dynamics of the Ural Coast of Baydaratskaya Bay
4.1.1. Erosional Coasts
4.1.2. Accumulative Coasts
4.2. Dynamics of the Yamal Coast of Baydaratskaya Bay
4.2.1. Erosional Coasts
4.2.2. Accumulative Coasts
4.3. Hydrometeorological Factors of Coastal Dynamics
5. Discussion
5.1. Application of Remote Sensing for Studies of Coastal Dynamics in the Kara Sea Region
5.2. Drivers of Coastal Dynamics
5.2.1. Spatial Variability of Coastal Dynamics
Exposure of the Coasts
Sediment Balance and Longshore Sediment Fluxes
Morphology of the Coasts
Lithology and Ground Ice
5.2.2. Temporal Variability of Coastal Dynamics
5.2.3. Human Impact on Coastal Dynamics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lantuit, H.; Overduin, P.P.; Wetterich, S. Recent progress regarding permafrost coasts. Permafr. Periglac. Process. 2013, 24, 120–130. [Google Scholar] [CrossRef]
- Kizyakov, A.I.; Leibman, M.O.; Perednya, D.D. Destructive relief-forming processes at the coasts of the Arctic plains with tabular ground ice. Earth’s Cryosphere 2006, 2, 79–89. (In Russian) [Google Scholar]
- Are, F.E. Coastal Erosion of the Arctic Lowlands; Academic Publishing House “Geo”: Novosibirsk, Russia, 2012; p. 291. ISBN 978-5-904682-70-5. (In Russian) [Google Scholar]
- Bates, N.R.; Mathis, J.T. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 2009, 6, 2433–2459. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Pipko, I.I.; Shakhova, N.E.; Dudarev, O.V.; Pugach, S.P.; Charkin, A.N.; McRoy, C.P.; Kosmach, D.; Gustafsson, Ö. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences 2011, 8, 2407–2426. [Google Scholar] [CrossRef] [Green Version]
- Vonk, J.E.; Sánchez-García, L.; Van Dongen, B.E.; Alling, V.; Kosmach, D.; Charkin, A.; Semiletov, I.P.; Dudarev, O.V.; Shakhova, N.; Roos, P.; et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012, 489, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. ISBN 978-1-107-66182-0. Available online: http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf (accessed on 15 April 2018).
- Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Meyer, L.A., Ed.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. Available online: http://www.ipcc.ch/report/ar5/syr/ (accessed on 15 April 2018).
- Parkinson, C.L.; DiGirolamo, N.E. New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970s. Remote Sens. Environ. 2016, 183, 198–204. [Google Scholar] [CrossRef]
- Barber, D.G.; Meier, W.N.; Gerland, S.; Mundy, C.J.; Holland, M.; Kern, S.; Li, Z.; Michel, C.; Perovich, D.K.; Tamura, T.; et al. Arctic sea ice. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017; pp. 103–136. ISBN 978-82-7971-101-8. Available online: https://www.amap.no/documents/download/2987 (accessed on 5 April 2018).
- Atkinson, D.E. Observed storminess patterns and trends in the circum-Arctic coastal regime. Geo-Mar. Lett. 2005, 25, 98–109. [Google Scholar] [CrossRef]
- Savo, V.; Lepofsky, D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Shabanova, N.; Ogorodov, S.; Shabanov, P.; Baranskaya, A. Hydrometeorological forcing of western russian arctic coastal dynamics: Xx-century history and current state. Geogr. Environ. Sustain. 2018, 11, 113–129. [Google Scholar] [CrossRef]
- Meyssignac, B.; Cazenave, A. Sea level: A review of present-day and recent-past changes and variability. J. Geodyn. 2012, 58, 96–109. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 2008, 95, 84–102. [Google Scholar] [CrossRef]
- Kritsuk, L.N.; Dubrovin, V.A.; Yastreba, N.V. Some results of integrated study of the Kara Sea coastal dynamics in the Marre-Sale meteorological station area, with the use of GIS technologies. Earth’s Cryosphere 2014, 4, 59–69. [Google Scholar]
- Pizhankova, E.I. Modern climate change at high latitudes and their influence on the coastal dynamics of the Dmitriy Laptev Strait area. Earth’s Cryosphere 2016, 1, 51–64. [Google Scholar]
- Maslakov, A.; Kraev, G. Erodibility of permafrost exposures in the coasts of Eastern Chukotka. Polar Sci. 2016, 10, 374–381. [Google Scholar] [CrossRef]
- Belova, N.G.; Shabanova, N.N.; Ogorodov, S.A.; Kamalov, A.M.; Kuznetsov, D.E.; Baranskaya, A.V.; Novikova, A.V. Erosion of permafrost coasts of Kara Sea near Kharasavey Cape, Western Yamal. Earth’s Cryosphere 2017, 21, 73–83. [Google Scholar] [CrossRef]
- The Arctic Coastal Erosion Problem; (No. SAND2016-9762); Frederick, J.M.; Thomas, M.A.; Bull, D.L.; Jones, C.A.; Roberts, J.D. (Eds.) Sandia National Lab.(SNL-NM): Albuquerque, NM, USA; Sandia National Laboratories: Carlsbad, NM, USA, 2016; p. 122. ISBN 978-92-9169-143-2. [Google Scholar]
- Vasiliev, A.; Kanevskiy, M.; Cherkashov, G.; Vanshtein, B. Coastal dynamics at the Barents and Kara Sea key sites. Geo-Mar. Lett. 2005, 25, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Lantuit, H.; Fritz, M.; Pollard, W.H.; Sachs, T.; Günther, F. Relation between planimetric and volumetric measurements of permafrost coast erosion: A case study from Herschel Island, western Canadian Arctic. Polar Res. 2016, 35, 30313. [Google Scholar] [CrossRef]
- Pizhankova, E.I. Termodenudation in the coastal zone of the Lyakhovsky islands (interpretation of aerospace images). Earth’s Cryosphere 2011, 3, 61–70. (In Russian) [Google Scholar]
- Grigoriev, M.N.; Razumov, S.O.; Kunitzkiy, V.V.; Spektor, V.B. Dynamics of the Russian East Arctic Sea coasts: Major factors, regularities and tendencies. Earth’s Cryosphere 2006, 4, 74–95. (In Russian) [Google Scholar]
- Vasiliev, A.A.; Streletskaya, I.D.; Cherkashev, G.A.; Vanshtein, B.G. Coastal dynamics of the Kara Sea. Earth’s Cryosphere 2006, 2, 56–67. (In Russian) [Google Scholar]
- Jones, B.M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, K.M.; Schmutz, J.A.; Flint, P.L. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Radosavljevic, B.; Lantuit, H.; Pollard, W.; Overduin, P.; Couture, N.; Sachs, T.; Helm, V.; Frit, M. Erratum to: Erosion and Flooding-Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada. Estuar. Coasts 2016, 39, 1294–1295. [Google Scholar] [CrossRef]
- Farquharson, L.M.; Mann, D.H.; Swanson, D.K.; Jones, B.M.; Buzard, R.M.; Jordan, J.W. Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska. Mar. Geol. 2018, 404, 71–83. [Google Scholar] [CrossRef]
- Mars, J.C.; Houseknecht, D.W. Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. Geology 2007, 35, 583–586. [Google Scholar] [CrossRef]
- Günther, F.; Overduin, P.P.; Sandakov, A.V.; Grosse, G.; Grigoriev, M.N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 2013, 10, 4297–4318. [Google Scholar] [CrossRef] [Green Version]
- Grosse, G.; Schirrmeister, L.; Kunitsky, V.V.; Hubberten, H.W. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast. Permafr. Periglac. Process. 2005, 16, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Stoker, J.M.; Gibbs, A.E.; Grosse, G.; Romanovsky, V.E.; Douglas, T.A.; Kinsman, N.E.M.; Richmond, B.M. Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR. Environ. Res. Lett. 2013, 8, 045025. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Klemas, V.V. Coastal and environmental remote sensing from unmanned aerial vehicles: An overview. J. Coast. Res. 2015, 31, 1260–1267. [Google Scholar] [CrossRef]
- Obu, J.; Lantuit, H.; Grosse, G.; Günther, F.; Sachs, T.; Helm, V.; Fritz, M. Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology 2017, 293, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Burn, C.R.; Lewkowicz, A.G. Canadian landform examples-17 retrogressive thaw slumps. Can. Geogr. 1990, 34, 273–276. [Google Scholar] [CrossRef]
- Are, F.E. Thermal abrasion of sea coasts. Polar Geogr. Geol. 1988, 1, 1–86. [Google Scholar] [CrossRef]
- Are, F.E. Thermal abrasion of sea coasts. Polar Geogr. Geol. 1988, 2, 87–157. [Google Scholar] [CrossRef]
- Kizyakov, A.I. The dynamics of thermodenudation processes at the Yugorsky Peninsula coast. Earth’s Cryosphere 2005, 9, 63–67. (In Russian) [Google Scholar]
- Leont’yev, I.O. Modeling erosion of sedimentary coasts in the western Russian Arctic. Coast. Eng. 2003, 47, 413–429. [Google Scholar] [CrossRef]
- Ogorodov, S.; Arkhipov, V.; Kokin, O.; Marchenko, A.; Overduin, P.; Forbes, D. Ice effect on coast and seabed in Baydaratskaya Bay, Kara Sea. Geogr. Environ. Sustain. 2013, 6, 21–37. [Google Scholar] [CrossRef]
- Ogorodov, S.A.; Baranskaya, A.V.; Belova, N.G.; Kamalov, A.M.; Kuznetsov, D.E.; Overduin, P.; Shabanova, N.N.; Vergun, A.P. Coastal Dynamics of the Pechora and Kara Seas Under Changing Climatic Conditions and Human Disturbances. Geogr. Environ. Sustain. 2016, 3, 53–73. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Shirokov, R.S.; Oblogov, G.E.; Streletskaya, I.D. Coastal dynamics of the Western Yamal. Earth’s Cryosphere 2011, 15, 63–65. [Google Scholar]
- Yuriev, I.V. Problems of gas field exploitation in the coastal zone of Western Yamal. Earth’s Cryosphere 2009, 13, 46–54. (In Russian) [Google Scholar]
- Bulygina, O.N.; Razuvaeva, V.N.; Trofimenko, L.T.; Shvets, N.V. Description of the Database Massive of Average Monthly Air Temperature at the Stations of Russia. 2017. Available online: meteo.ru/data (accessed on 20 May 2018).
- Baydaratskaya Bay Environmental Conditions. The Basic Results of Studies for the Pipeline “Yamal-Center” Underwater Crossing Design; Publishing House “GEOS”: Moscow, Russia, 1997; p. 432. ISBN 5-89118-008-1. (In Russian) [Google Scholar]
- Romanenko, F.A.; Belova, N.G.; Nikolaev, V.I.; Olyunina, O.S. Sediments of the Yugorsky coast of Baydaratskaya Bay, Kara Sea. Fundamental Problems of Quaternary: Results and Trends of Further Researches. In Proceedings of the Fifth All-Russian Quaternary Conference, Moscow, Russia, 7–9 November 2007; Publishing House “GEOS”: Moscow, Russia, 2007; pp. 348–351, ISBN 978-5-89118-401-5. (In Russian). [Google Scholar]
- Belova, N.G.; Solomatin, V.I.; Romanenko, F.A. Massive ground ice on the Ural coast of Baydaratskaya Bay, Kara Sea, Russia. In Proceedings of the 9th International Conference on Permafrost, University of Alaska, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 107–112. [Google Scholar]
- Romanenko, F.A. Geomorphological types of low coasts of Yamal and Tazovskiy peninsula and their role in forming of shore deposition. In Geology of Marine and Oceans, Proceedings of the XIX International Conference on Marine Geology, Publishing House “GEOS”, Moscow, Russia, 14–18 November 2011; University of Washington: Washington, DC, USA; Volume 1, pp. 75–79. (In Russian)
- Forman, S.L.; Ingolfsson, O.; Gataullin, V.; Manley, W.F.; Lokrantz, H. Late Quaternary stratigraphy, glacial limits, and paleoenvironments of the Marresale Area, Western Yamal Peninsula, Russia. Quat. Res. 2002, 57, 355–370. [Google Scholar] [CrossRef]
- Belova, N.G. Massive Ice of the Southwestern Coast of the Kara Sea; MAKS Press: Moscow, Russia, 2014; p. 180. ISBN 978-5-317-04875-4. (In Russian) [Google Scholar]
- Romanenko, F.A.; Garankina, E.V.; Shilova, O.S. The stratigraphy of recent sediments at western Yamal Peninsula and topography formation in Late Pleistocene and Holocene. In Fundamental Problems of Quaternary: Results and Trends of Further Researches, Proceedings of the 6th All-Russian Quaternary Conference, Novosibirsk, Russia, 19–23 October 2009; Publishing House of Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2009; pp. 505–508. (In Russian) [Google Scholar]
- United State Geological Survey. Available online: earthexplorer.usgs.gov (accessed on 15 February 2018).
- Galiatsatos, N.; Donoghue, D.N.; Philip, G. High resolution elevation data derived from stereoscopic CORONA imagery with minimal ground control: An approach using Ikonos and SRTM data. Photogramm. Eng. Remote Sens. 2007, 9, 1093–1106. [Google Scholar] [CrossRef]
- ArcticDEM. Available online: https://www.pgc.umn.edu/data/arcticdem/ (accessed on 15 February 2018).
- Dai, C.; Howat, I.M. Measuring lava flows with ArcticDEM: Application to the 2012–2013 eruption of Tolbachik, Kamchatka. Geophys. Res. Lett. 2017, 44, 12,133-12,140. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) version 4.0. An ArcGIS Extension for Calculating Shoreline Change. U.S. Geological Survey Open-File Report 2008-1278. 2009. Available online: https://pubs.er.usgs.gov/publication/ofr20081278 (accessed on 5 March 2018).
- Günther, F.; Overduin, P.P.; Yakshina, I.A.; Opel, T.; Baranskaya, A.V.; Grigoriev, M.N. Observing Muostakh disappear: Permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 2015, 1, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA- Interim reanalysis: Configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- EUMETSAT Ocean and Sea Ice Satellite Application Facility. Global sea ice concentration reprocessing dataset 1978–2015 (v1.2, 2015). Available online: http://osisaf.met.no (accessed on 14 September 2018).
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009. [Google Scholar]
- Streletskaya, I.D.; Vasiliev, A.A.; Vanstein, B.G. Erosion of sediment and organic carbon from the Kara Sea coast. Arct. Antarct. Alp. Res. 2009, 1, 79–87. [Google Scholar] [CrossRef]
- Konopczak, A.M.; Manson, G.K.; Couture, N.J. Variability of Coastal Change along the Western Yukon Coast; Geological Survey of Canada Open File Report; Geological Survey of Canada: Ottawa, ON, Canada, 2014; 81p. [Google Scholar]
- Kamalov, A.M.; Ogorodov, S.A.; Birukov, V.Y.; Sovershaeva, G.D.; Tsvetsinsky, A.S.; Arkhipov, V.V.; Belova, N.G.; Noskov, A.I.; Solomatin, V.I. Coastal and seabed morpholithodynamics of Baydaratskaya Bay at the route of gas pipeline crossing. Earth’s Cryosphere 2006, 3, 3–14. (In Russian) [Google Scholar]
- Zenkovich, V.P. Fundamentals of the Theory about the Development of the Sea Coast; Publisher Academia of Science of the USSR: Moscow, Russia, 1962; p. 710. (In Russian) [Google Scholar]
- Geoecology of the North: Introduction into Geocryecology; Solomatin, V.I.; Ushakov, G.B.; Golubchikov, V.A.; Zaytsev, V.I. (Eds.) Moscow State University Publishier: Moscow, Russia, 1992; p. 270. ISBN 978-521-102-370-3. (In Russian) [Google Scholar]
- Dallimore, S.R.; Wolfe, S.; Solomon, S.M. Influence of ground ice and permafrost on coastal evolution, Richards Island, Beaufort Sea Coast, NWT. Can. J. Earth Sci. 1996, 33, 664–675. [Google Scholar] [CrossRef]
- Barnhart, K.R.; Overeem, I.; Anderson, R.S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 2014, 8, 1777–1799. [Google Scholar] [CrossRef] [Green Version]
- Irrgang, A.M.; Lantuit, H.; Manson, G.K.; Günther, F.; Grosse, G.; Overduin, P.P. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 2018, 123, 779–800. [Google Scholar] [CrossRef]
- Vasiliev, A.A. Permafrost controls of coastal dynamics at the Marre-Sale key site, western Yamal. In Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; pp. 1173–1178. [Google Scholar]
- Vasiliev, A.A. Some problems of coastal mapping in the Russian Arctic. In Ber. Polarforsch. Meeresforsch. 2002, 413. Arctic Coastal Dynamics; Report of an International Workshop; Potsdam, Germany, 26-30 November 2001; Brown, J., Solomon, S., Eds.; Alfred Wegener Institute for Polar and Marine Research: Potsdam, Germany, 2002; p. 77. [Google Scholar]
- Grigoriev, M.N. Cryomorphogenesis and Lithodynamics of the Coastal-Shelf Zone of the Seas of Eastern Siberia. Ph.D. Thesis, Melnikov Permafrost Institute, Yakutsk, Russia, 2008. (In Russian). [Google Scholar]
- Shabanova, N.N.; Ogorodov, S.A.; Romanenko, F.A. Russian arctic coastal dynamics hydrometeorological forcing: Half-century his-tory and current state. In Proceedings of the Coastal Dynamics 2017, Helsingør, Denmark, 12–16 June 2017; pp. 108–116. Available online: http://coastaldynamics2017.dk/onewebmedia/196_shabanova.pdf (accessed on 15 May 2018).
- Kopa-Ovdienko, N.V.; Ogorodov, S.A. Peculiarities of dynamics of thermoabrasion coasts of Baydaratskaya Bay (Kara Sea) today. Geomorphol. RAS 2016, 3, 12–21. (In Russian) [Google Scholar] [CrossRef]
- Brown, J.; Jorgenson, M.T.; Smith, O.P.; Lee, W. Long-term rates of erosion and carbon input, Elson Lagoon, Barrow, Alaska. In Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; pp. 101–106. [Google Scholar]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Are, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.; et al. The Arctic Coastal Dynamics database: A new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef]
Height, m a.s.l. | Landforms | Lithological and Permafrost Composition |
---|---|---|
Ural Coast | ||
−9–1 | Modern shore | Series of sandy beach ridges at 2–9 m depth, pebbly-sandy tidal flat and sandy beach up to 200 m width, unfrozen |
2–4 | Holocene laida (2–4 m laida) | Ice-rich loams overlain by peats and sands with pebbles, massive and reticulate cryostructure with wedge ice |
6–8 | Late Pleistocene low terraces (T6–8 m) | Sands with ice wedges underlain by loams with few pebbles and boulders, massive cryostructure |
12–16, up to 20 | Late Pleistocene [47] high terrace (T12–16 m) | Thin laminated sands, with multiple massive ice beds, ice lenses and wedge ice outcrops in coastal bluffs [48]. Exposed massive ice beds reach 3.5 m vertically and 80 m laterally. Drained lake basins are widespread. |
Yamal Coast | ||
−9–1 | Modern shore | Series of sandy beach ridges at 2–9 m depth, a tidal flat composed of thin sands and beach of sands with sparse pebbles up to 150 m in width, unfrozen |
2–4 | Holocene laida | Sands with pebble underlain by loams, extending to the Yarayakha River valley, and divided from the sea by a sandy barrier beach, mostly unfrozen |
6–8 | Late Pleistocene terraces (T6–8 m) | Sands, massive cryostructure |
12–16 | Late Pleistocene [49] terrace (T12–16 m) | Sands in the north of the study area near Cape Mutniy and pebbly loams in the southern part of the study area on the left side of Yarayakha, which could be correlated to the so-called Kara Diamicton of the Marresale area [50,51,52], and are either of glacial or marine origin. Massive and reticulate cryostructure |
25–30 | Late Pleistocene terrace (T25–30 m) | Thin laminated sands with clays at the base of the bluff. The sediments have low ice content; a few ice lenses in sands and wedge ice in peat was reported [51]. Sandy strata are supposed to correlate to Oleniy and Baidarata sands at the Marresale area [50,51,52] |
Sensor | Date | Resolution (m) | RMSE of Coregistration (m) | Topography-Induced Uncertainty (m) | Processing Level |
---|---|---|---|---|---|
Ural coast | |||||
Corona KH-4А | 09.08.1964 | 7.5 | 7 | - | Raw |
Aerial | 10.07.1988 | 0.7 | 0.8 | - | Raw |
QuickBird-2 | 31.08.2005 | 0.6 | 1.1 | 3.2 | Ortho Ready Standard |
WorldView-1 | 22.07.2012 | 0.5 | 0.2 | 4.9 | Ortho Ready Standard |
WorldView-2 | 31.07.2013 | 0.5 | 0.3 | 4.9 | Ortho Ready Standard |
WorldView-2 | 21.05.2016 | 0.5 | 0.8 | 5.9 | Standard |
Yamal coast | |||||
Corona KH-4 | 21.08.1968 | 2 | 8 | - | Raw |
Aerial | 10.07.1988 | 0.7 | 1.1 | - | Raw |
QuickBird-2 | 29.08.2005 | 0.5 | 0.6 | 6.6 | Standard |
WorldView-3 | 21.06.2016 | 0.3 | 0.4 | 3.8 | Standard |
FactorPeriod | 1964–1988 | 1988–2005 | 2005–2012 | 2012–2016 | 1964–2016 | |
---|---|---|---|---|---|---|
Rate Uncertainty | 0.3 | 0.2 | 0.45 | 0.3 | 0.15 | |
landforms | 2–4 m laida | 1.8 | 0.2 | 7.0 | 0.6 | 1.7 |
T6–8 m | 0.9 | 0.9 | 3.7 | 0.9 | 1.3 | |
T12–16 m | 1.3 | 1.3 | 1.0 | 0.0 | 1.1 | |
lithology | sands | 1.4 | 1.2 | 0.8 | 0.0 | 1.1 |
loams | 0.9 | 1.0 | 3.7 | 0.9 | 1.3 | |
sands and loams | 1.1 | 1.1 | 2.6 | 0.4 | 1.3 | |
permafrost | massive ice beds | 1.1 | 1.0 | 2.6 | 0.5 | 1.2 |
wedge ice | 1.2 | 1.0 | 2.7 | 0.4 | 1.2 | |
mean | 1.1 | 1.1 | 2.6 | 0.5 | 1.2 |
FactorPeriod | 1964–1988 | 1988–2005 | 2005–2012 | 2012–2016 | 1964–2016 | |
---|---|---|---|---|---|---|
landforms | 2–4 m laida | 3.2 ± 1.0 | 0.4 ± 0.6 | 15.7 ± 1.9 | 1.3 ± 0.9 | 4.2 ± 0.6 |
T6–8 m | 3.2 ± 2.1 | 5.8 ± 1.4 | 13.5 ± 3.2 | 5.2 ± 2.11 | 5.8 ± 1.1 | |
T12–16 m | 12.8 ± 4.2 | 13.6 ± 2.8 | 8.9 ± 6.3 | 0.2 ± 4.2 | 12.3 ± 2.1 | |
lithology | sands | 14.1 | 14.7 | 9.5 | 0.3 | 13.4 |
loams | 3.3 | 5.9 | 13.4 | 5.5 | 5.9 | |
sands and loams | 7.6 | 9.4 | 11.7 | 2.1 | 8.8 | |
permafrost | massive ice beds | 7.6 | 9.4 | 11.9 | 3.0 | 8.9 |
wedge ice | 7.8 | 9.0 | 11.8 | 2.0 | 8.7 | |
mean for the study area | 7.4 | 9.2 | 11.7 | 2.9 | 8.7 ± 1.4 |
FactorPeriod | 1968–1988 | 1988–2005 | 2005–2016 | 1968–2016 | |
---|---|---|---|---|---|
rate uncertainty | 0.37 | 0.2 | 0.38 | 0.16 | |
landforms | T6–8 m | 0.2 | 0.1 | 0.9 | 0.3 |
T12–16 m | 0.1 | 0.3 | 0.5 | 0.3 | |
T25–30 m | 0.2 | 0.3 | 0.6 | 0.3 | |
lithology | sands | 0.1 | 0.2 | 0.7 | 0.3 |
loams | 0.1 | 0.4 | 0.3 | 0.3 | |
sands and loams | 0.0 | 0.0 | 2.2 | 0.5 | |
permafrost | wedge ice | 0.2 | 0.3 | 0.5 | 0.3 |
mean | 0.1 | 0.2 | 0.6 | 0.3 |
FactorPeriod | 1968–1988 | 1988–2005 | 2005–2016 | 1968–2016 | |
---|---|---|---|---|---|
landforms | T6–8 m | 0.6 ± 2.6 | 0.7 ± 1.9 | 3.5 ± 2.6 | 1.3 ± 1.2 |
T12–16 m | 2.0 ± 5.2 | 4.6 ± 2.9 | 7.7 ± 5.3 | 4.8 ± 2.3 | |
T25–30 m | 3.3 ± 10.0 | 6.2 ± 5.4 | 10.8±10.2 | 6.4 ± 4.3 | |
lithology | sands | 1.6 | 3.1 | 7.2 | 3.8 |
loams | 1.4 | 4.6 | 3.3 | 3.6 | |
sands and loams | 0.1 | 0.1 | 7.9 | 1.8 | |
permafrost | wedge ice | 2.8 | 5.8 | 9.1 | 5.7 |
mean | 1.5 | 3.4 | 6.4 | 3.7 ± 2.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikova, A.; Belova, N.; Baranskaya, A.; Aleksyutina, D.; Maslakov, A.; Zelenin, E.; Shabanova, N.; Ogorodov, S. Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data. Remote Sens. 2018, 10, 1481. https://doi.org/10.3390/rs10091481
Novikova A, Belova N, Baranskaya A, Aleksyutina D, Maslakov A, Zelenin E, Shabanova N, Ogorodov S. Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data. Remote Sensing. 2018; 10(9):1481. https://doi.org/10.3390/rs10091481
Chicago/Turabian StyleNovikova, Anna, Nataliya Belova, Alisa Baranskaya, Daria Aleksyutina, Alexey Maslakov, Egor Zelenin, Natalia Shabanova, and Stanislav Ogorodov. 2018. "Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data" Remote Sensing 10, no. 9: 1481. https://doi.org/10.3390/rs10091481
APA StyleNovikova, A., Belova, N., Baranskaya, A., Aleksyutina, D., Maslakov, A., Zelenin, E., Shabanova, N., & Ogorodov, S. (2018). Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data. Remote Sensing, 10(9), 1481. https://doi.org/10.3390/rs10091481