Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Global Inventory Modeling and Mapping Studies Normalized Differential Vegetation Index (GIMMS NDVI3g) Dataset
2.3. Climate Dataset
2.4. Methods
2.4.1. Sen’s Tendency Estimation
2.4.2. Mann–Kendall (M–K) Significance Test
2.4.3. Multiple Regression and Residual Analysis
2.4.4. Hurst Index
2.4.5. Partial Correlation Analysis
3. Results
3.1. Spatial and Temporal Patterns and Variations Analysis
3.1.1. Temperature and Precipitation
3.1.2. Vegetation Patterns and Variations on Annual Scales
3.1.3. Vegetation Patterns and Variations on Seasonal Scales
3.1.4. Persistence Analysis of Vegetation Variations Trend
3.2. Impacts of Climate Change and Human Activities on Vegetation
3.2.1. Estimating Relations of Vegetation, Temperature, and Precipitation
3.2.2. Spatial Patterns of Vegetation under the Influence of Climate Change and Human Activities
3.2.3. Vegetation Changes under the Influence of Climate Change and Human Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; 1535p. [Google Scholar]
- Buitenwerf, R.; Rose, L.; Higgins, S.I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Chang. 2015, 5, 364–368. [Google Scholar] [CrossRef]
- Verbeeck, H.; Kearsley, E. The importance of including lianas in global vegetation models. Proc. Natl. Acad. Sci. USA 2016, 113, E4. [Google Scholar] [CrossRef] [PubMed]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, TERRA MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Rasmus, F.; Simon, R.P. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.; Neigh, C.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Mueller, T.; Dressler, G.; Tucker, C.J.; Pinzon, J.E.; Leimgruber, P.; Dubayah, R.O.; Hurtt, G.C.; Bohning-Gaese, K.; Fagan, W.F. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 2014, 6, 5717–5731. [Google Scholar] [CrossRef]
- Ma, Z.H.; Peng, C.H.; Zhu, Q.; Chen, H.; Yu, G.R.; Li, W.Z.; Zhou, X.L.; Wang, W.F.; Zhang, W.H. Regional drought-reduced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl. Acad. Sci. USA 2012, 109, 2423–2427. [Google Scholar] [CrossRef]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, W.; Zheng, Z.; Chen, G.; Fan, D.A. Comparative Analysis between GIMSS NDVIg and NDVI3g for Monitoring Vegetation Activity Change in the Northern Hemisphere during 1982–2008. Remote Sens. 2013, 5, 4031–4044. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Sun, O.J.; Huang, J.H.; Li, L.H.; Liu, P.; Han, X.G. Soil carbon and nitrogen stores and storage potential as affected by land use in an Agro-pastoral ecotone of northern China. Biogeochemistry 2007, 82, 127–138. [Google Scholar] [CrossRef]
- Zhao, H.L.; Zhao, X.Y.; Zhang, T.H.; Zhou, R.L. Boundary line on Agro-pasture zigzag zone in north China and its problems on eco-environment. Adv. Earth Sci. 2002, 17, 739–747. [Google Scholar]
- Zhao, Z.W.; Zhang, L.; Li, X.; Wang, Y.X.; Wang, S.L. Monitoring vegetation dynamics during the growing season in Ningxia based on MOD13Q1 data. Prog. Geogr. 2017, 36, 741–752. [Google Scholar]
- Zhang, C.; Lei, T.W.; Song, T.X. Analysis of temporal and spatial characteristics of time lag correlation between the vegetation cover and soil moisture in the Loess Plateau. Acta Ecol. Sin. 2018, 38, 2128–2138. [Google Scholar]
- Gao, H.D.; Pang, G.W.; Zhang, Z.B.; Cheng, S.D. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geogr. Sin. 2017, 72, 863–874. [Google Scholar]
- Liu, D.; Yu, C.L. Effects of climate change on the distribution of main vegetation types in Northeast China. Acta Geogr. Sin. 2017, 37, 6511–6522. [Google Scholar]
- Wang, Z.M.; Luo, L.; Song, K.S.; Liu, D.W.; Zhang, B.; Song, C.C. Growing-season normal difference vegetation index, NDVI, response to climate changes and increased carbon dioxide concentration in frozen areas of Northeast China during 1982–2008. Acta Sci. Circumstantiae 2010, 30, 2332–2343. [Google Scholar]
- Wang, X.; Jin, R.; Du, P.J.; Liang, H. Trend of surface freeze-thaw cycles and vegetation green-up date and their response to climate change on the Qinghai-Tibet Plateau. J. Remote Sens. 2018, 22, 508–520. [Google Scholar]
- Zhuo, G.; Chen, S.R.; Zhou, Y.B. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors. Acta Ecol. Sin. 2018, 38, 3208–3218. [Google Scholar]
- Zhang, G.L.; Ouyang, H.; Zhang, X.Z.; Zhang, C.P.; Xu, X.L. Vegetation change and its responses to climatic variation based on eco-geographical regions of Tibetan Plateau. Geogr. Res. 2010, 8, 88–95. [Google Scholar]
- Shi, X.L.; Shi, W.J. Review on boundary shift of farming-pastoral ecotone in northern China and its driving forces. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–11. [Google Scholar]
- Shi, X.; Wang, W.; Shi, W. Progress on quantitative assessment of the impacts of climate change and human activities on cropland change. J. Geogr. Sci. 2016, 26, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Fang, X.Q.; Ren, Y.Y.; Zhang, X.Z.; Chen, L. Cropland cover change in northeast China during the past 300 years. Sci. China Ser. D Earth Sci. 2009, 52, 1172–1182. [Google Scholar] [CrossRef]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lü, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Fang, J.Y.; Piao, S.L.; He, J.S.; Ma, W.H. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China (Ser. C Life Sci.) 2004, 47, 229–240. [Google Scholar]
- Bao, G.; Bao, Y.H.; Yang, Z.H.; Zhou, Y.; Shiirew, A. Vegetation Cover Changes in Mongolian Plateau and Its Response to Seasonal Climate Changes in Recent 10 Years. Sci. Geogr. Sin. 2013, 33, 613–621. [Google Scholar]
- Zhao, X.; Hu, H.; Shen, H.; Zhou, D.; Zhou, L.; Myneni, R.B.; Fang, J. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc. Ecol. 2015, 30, 1599–1611. [Google Scholar] [CrossRef]
- Cai, B.F.; Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. J. Remote Sens. 2009, 13, 1170–1186. [Google Scholar]
- Liu, Y.; Li, Y.; Li, S.C.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Li, X.B.; Tan, M.H. Impacts of rural-urban migration on vegetation cover in eco-logically fragile areas: Taking Inner Mongolia as a case. Acta Geogr. Sin. 2015, 70, 1622–1631. [Google Scholar]
- Li, X.M.; Ren, Z.Y.; Zhang, C. Spatial-temporal variations of vegetation cover in Chongqing city (1999–2010): Impacts of climate factors and human activities. Sci. Geogr. Sin. 2013, 33, 1390–1394. [Google Scholar]
- Li, Y.; Qin, Y.C. The Response of Net Primary Production to Climate Change: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone in China. Int. J. Environ. Res. Public Health 2019, 16, 1497. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhu, C. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Geerken, R.; Ilaiwi, M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Environ. 2004, 90, 490–504. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Pan, Y.Z.; Zhu, X.F.; Li, S.S. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors. Acta Geogr. Sin. 2015, 70, 705–716. [Google Scholar]
- Liu, B.; Sun, Y.L.; Wang, Z.L.; Zhao, T.B. Analysis of the vegetation cover change and the relative role of its influencing factors in North China. J. Nat. Resour. 2015, 30, 12–23. [Google Scholar]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Hurst, E.H. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar]
- Ray, R.; Khondekar, M.H.; Ghosh, K.; Bhattacharjee, A.K. Scaling and nonlinear behaviour of daily mean temperature time series across India. Chaos Solitons Fractals 2016, 84, 9–14. [Google Scholar] [CrossRef]
- Rehman, S. Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos Solitons Fractals 2009, 39, 499–509. [Google Scholar] [CrossRef]
- Fang, L.; Wang, W.J.; Jiang, W.G.; Chen, M.; Wang, Y.; Jia, K.; Li, Y.S. Spatio-temporal Variations of Vegetation Cover and Its Responses to Climate Change in the Heilongjiang Basin of China from 2000 to 2014. Sci. Geogr. Sin. 2017, 37, 1745–1754. [Google Scholar]
- Deng, Z.Y.; Wang, Q.; Zhang, Q.; Qing, J.Z.; Yang, Q.G.; Yuan, Z.P.; Liu, W.J.; Xu, J.F. Impact of climate warming and drying on food crops in northern China and the countermeasures. Acta Ecol. Sin. 2010, 30, 6278–6288. [Google Scholar]
- Chen, C.N.; Zhu, L.Q.; Tian, L.; Li, X.G. Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains. Acta Ecol. Sin. 2019, 39, 1–9. [Google Scholar]
- Yuan, L.H.; Jiang, W.G.; Shen, W.M.; Liu, Y.H.; Wang, W.J.; Tao, L.L.; Zheng, H.; Liu, X.F. The Spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar]
- Fan, N.; Xie, G.D.; Zhang, C.S.; Chen, L.; Li, W.H.; Cheng, S.K. Spatial-temporal dynamic changes of vegetation cover in Lancang river basin during 2001–2010. Resour. Sci. 2012, 34, 1222–1231. [Google Scholar]
- Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Rajiv, K.C.; Richard, F.; Victor, B.; Philippe, C.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- NASA. Human Activity in China and India Dominates the Greening of Earth, NASA Study Shows. Available online: https://www.nasa.gov/feature/ames/human-activity-in-china-and-india-dominates-the-greening-of-earth-nasa-study-shows (accessed on 12 February 2019).
- Luan, J.k.; Liu, D.F.; Huang, Q.; Feng, J.L.; Li, G.B. Analysis of the spatial-temporal change and impact factors of the vegetation index in Yulin, Shaanxi Province, in the last 17 years. Acta Ecol. Sin. 2018, 38, 2780–2790. [Google Scholar]
- Li, J.C.; Wang, J.R.; Gong, B.; Gan, X.L.; Hu, W.W.; Liu, W.L. Spatiotemporal changes of vegetation cover in response to climate change on the Tibetan Plateau. Acta Geol. Sin. 2014, 88, 974–983. [Google Scholar] [CrossRef]
- Ma, Z.G.; Ren, X.B. Drying Trend over China from 1951 to 2006. Adv. Clim. Chang. Res. 2007, 3, 195–201. [Google Scholar]
- Sun, Y.G.; Bai, R.H.; Xie, A. Interdecadal Variations of Droughts in Northeastern China. Acta Scicentiarum Nat. Univ. Pekinesis 2004, 40, 806–813. [Google Scholar]
- Xu, Y.L.; Zheng, D.W.; Liu, X.Y.; Zhao, Y.X.; Ma, C.S.; Li, K. Studies on Critical Issues of Agriculture Adaptation to Climate Change in China; China Meteorological Press: Beijing, China, 2014. [Google Scholar]
- Zhao, A.Z.; Zhang, A.B.; Liu, H.X.; Liu, Y.X.; Wang, H.F.; Wang, D.L. Spatiotemporal Variation of Vegetation Coverage before and after Implementation of Grain for Green Project in the Loess Plateau. J. Nat. Res. 2017, 32, 449–460. [Google Scholar]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z.B. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef]
- Deng, C.H.; Bai, H.Y.; Gao, S.; Liu, R.J.; Ma, X.P.; Huang, X.Y.; Meng, Q. Spatial-temporal variation of the vegetation coverage in Qinling mountains and its dual response to climate change and human activities. J. Nat. Res. 2018, 33, 425–438. [Google Scholar]
- Yan, E.P.; Lin, H.; Dang, Y.F.; Xia, C.Z. The spatiotemporal changes of vegetation cover in Beijing-Tianjin sandstorm source control region during 2000–2012. Acta Ecol. Sin. 2014, 34, 5007–5020. [Google Scholar]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Ma, Y.; Nie, J. Vegetation dynamics in Qinling-Daba mountains in relation to climate factors between 2000 and 2014. J. Geogr. Sci. 2016, 26, 45–58. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, M.J.; Zhang, H.M.; Wen, C. Spatiotemporal variation of the vegetation coverage in Yangtze river basin during 1982–2015. J. Nat. Res. 2018, 33, 2084–2097. [Google Scholar]
- Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; George, R.P.; John, B.D.; Li, Q. China’s forest policy for the 21st century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Z.; Qin, Y.; Sun, Y. Temporal-Spatial Variation Characteristics of Soil Erosion in the Pisha Sandstone Area, Loess Plateau, China. Pol. J. Environ. Stud. 2019, 28, 2205–2214. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. The 13th Five-Year Plan for Ecological and Environmental Protection. Available online: http://www.gov.cn/zhengce/content/2016-12/05/content_5143290.htm (accessed on 5 December 2016).
- Xing, H.N.; Yang, Q.L.; Yu, L.M.; Liu, X.G. Design and experiment of sprinkler irrigation device with square spray field. Trans. Chin. Soc. Agric. Eng. 2017, 33, 84–91. [Google Scholar]
- Liu, Y.X.; Liang, X.; Liu, X.F. Study on the Spatial Optimizing and Coordination of Cities and Ground Vegetation Under the Background of Ecological Restoration in Guanzhong Region. J. Nat. Res. 2013, 28, 1515–1525. [Google Scholar]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
Level | NDVI < 0.1 | 0.1 < NDVI<0.2 | 0.2 < NDVI < 0.3 | 0.3 < NDVI < 0.4 | 0.4 < NDVI < 0.5 | 0.5 < NDVI < 0.8 |
---|---|---|---|---|---|---|
Area | 9.80 | 21.04 | 22.81 | 24.37 | 16.37 | 5.61 |
Land Use Type | Average NDVI Value | Rate of Vegetation Change (%/10a) | ||||||
---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
Cultivated land | 0.34 | 0.57 | 0.39 | 0.22 | 1.43 | 1.07 | 1.57 | 0.38 |
Forest land | 0.40 | 0.71 | 0.48 | 0.29 | 1.15 | 0.24 | 1.14 | −0.31 |
Grassland | 0.19 | 0.37 | 0.25 | 0.15 | 0.43 | 0.43 | 0.49 | −0.009 |
Level | Significant Increase | Persistence Increase | Decrease | Significant Decrease | Significant Increase | Anti-Persistence Increase | Decrease | Significant Increase |
---|---|---|---|---|---|---|---|---|
Spring | 24.03 | 3.61 | 2.85 | 0.52 | 2.51 | 40.69 | 22.75 | 3.03 |
Summer | 25.18 | 2.13 | 1.55 | 0.70 | 3.20 | 37.08 | 22.08 | 8.08 |
Autumn | 32.82 | 0.01 | 0.81 | 0.14 | 2.50 | 41.32 | 19.49 | 2.90 |
Winter | 9.97 | 6.50 | 5.06 | 2.42 | 0.90 | 38.17 | 27.60 | 9.40 |
Year | 14.76 | 8.20 | 4.13 | 0.53 | 7.85 | 43.60 | 18.93 | 2.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xie, Z.; Qin, Y.; Zheng, Z. Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China. Remote Sens. 2019, 11, 1159. https://doi.org/10.3390/rs11101159
Li Y, Xie Z, Qin Y, Zheng Z. Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China. Remote Sensing. 2019; 11(10):1159. https://doi.org/10.3390/rs11101159
Chicago/Turabian StyleLi, Yang, Zhixiang Xie, Yaochen Qin, and Zhicheng Zheng. 2019. "Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China" Remote Sensing 11, no. 10: 1159. https://doi.org/10.3390/rs11101159
APA StyleLi, Y., Xie, Z., Qin, Y., & Zheng, Z. (2019). Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China. Remote Sensing, 11(10), 1159. https://doi.org/10.3390/rs11101159