Editorial for Special Issue “Remote Sensing Water Cycle: Theory, Sensors, Data, and Applications”
1. Introduction
2. Overview of Contributions
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Canisius, F.; Brisco, B.; Murnaghan, K.; Van Der Kooij, M.; Keizer, E. SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sens. 2019, 11, 720. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Q.; Lossow, S.; Chafik, L.; Risi, C.; Murtagh, D.; Hannachi, A. Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements. Remote Sens. 2018, 10, 166. [Google Scholar] [CrossRef]
- Wan, W.; Liu, B.; Zeng, Z.; Chen, X.; Wu, G.; Xu, L.; Chen, X.; Hong, Y. Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sens. 2019, 11, 854. [Google Scholar] [CrossRef]
- He, K.; Ma, Z.; Zhao, R.; Biswas, A.; Teng, H.; Xu, J.; Yu, W.; Shi, Z. A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau. Remote Sens. 2018, 10, 1974. [Google Scholar] [CrossRef]
- Ma, Z.; He, K.; Tan, X.; Xu, J.; Fang, W.; He, Y.; Hong, Y. Comparisons of Spatially Downscaling TMPA and IMERG over the Tibetan Plateau. Remote Sens. 2018, 10, 1883. [Google Scholar] [CrossRef]
- Trent, T.; Boesch, H.; Somkuti, P.; Scott, A.N. Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared. Remote Sens. 2018, 10, 1469. [Google Scholar] [CrossRef]
- Zhang, F.; Barriot, J.-P.; Xu, G.; Yeh, T.-K. Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case. Remote Sens. 2018, 10, 758. [Google Scholar] [CrossRef]
- Du, J.; Kimball, S.J.; Reichle, H.R.; Jones, A.L.; Watts, D.J.; Kim, Y. Global Satellite Retrievals of the Near-Surface Atmospheric Vapor Pressure Deficit from AMSR-E and AMSR2. Remote Sens. 2018, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
- Silva Oliveira, B.; Caria Moraes, E.; Carrasco-Benavides, M.; Bertani, G.; Augusto Verola Mataveli, G. Improved Albedo Estimates Implemented in the METRIC Model for Modeling Energy Balance Fluxes and Evapotranspiration over Agricultural and Natural Areas in the Brazilian Cerrado. Remote Sens. 2018, 10, 1181. [Google Scholar] [CrossRef]
- Panegrossi, G.; Rysman, J.-F.; Casella, D.; Marra, C.A.; Sanò, P.; Kulie, S.M. CloudSat-Based Assessment of GPM Microwave Imager Snowfall Observation Capabilities. Remote Sens. 2017, 9, 1263. [Google Scholar] [CrossRef]
- Mohammed, N.I.; Bolten, D.J.; Srinivasan, R.; Lakshmi, V. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations. Remote Sens. 2018, 10, 885. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Xie, H.; Hasan, E.; Hong, Y. Editorial for Special Issue “Remote Sensing Water Cycle: Theory, Sensors, Data, and Applications”. Remote Sens. 2019, 11, 1210. https://doi.org/10.3390/rs11101210
Wan W, Xie H, Hasan E, Hong Y. Editorial for Special Issue “Remote Sensing Water Cycle: Theory, Sensors, Data, and Applications”. Remote Sensing. 2019; 11(10):1210. https://doi.org/10.3390/rs11101210
Chicago/Turabian StyleWan, Wei, Hongjie Xie, Emad Hasan, and Yang Hong. 2019. "Editorial for Special Issue “Remote Sensing Water Cycle: Theory, Sensors, Data, and Applications”" Remote Sensing 11, no. 10: 1210. https://doi.org/10.3390/rs11101210
APA StyleWan, W., Xie, H., Hasan, E., & Hong, Y. (2019). Editorial for Special Issue “Remote Sensing Water Cycle: Theory, Sensors, Data, and Applications”. Remote Sensing, 11(10), 1210. https://doi.org/10.3390/rs11101210