Identification of Natural and Anthropogenic Drivers of Vegetation Change in the Beijing-Tianjin-Hebei Megacity Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. NDVI Trend Detection
2.4. Analysis of NDVI Trends Based on GWR
2.5. Calculation of the Ratio of Human to Natural Factors
3. Results
3.1. Spatial Characteristics of NDVI Trends
3.2. Multivariate Regression of NDVI Trends
3.3. Regression Differences in Different Geomorphic Units
4. Discussion
4.1. Impact of Climate on NDVI Trends
4.2. Influences of Non-Climatic Factors on NDVI Trends
4.2.1. Geomorphology
4.2.2. Land Use
4.2.3. Accessibility
4.2.4. Agricultural Production Technology
4.2.5. Socioeconomic Activities
4.2.6. Initial NDVI
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary data
Primary Geomorphic Unit | Secondary Geomorphic Unit | Area (km2) | NDVI | Elevation (m) | Slope (°) | POP | GDP | PRE | TEM |
---|---|---|---|---|---|---|---|---|---|
Inner Mongolia Plateau | Plateau Hills (I1) | 7,376 | 0.55 | 1,455 | 5.35 | 71 | 144 | 432 | 3.06 |
High Plain (I2) | 5,722 | 0.51 | 1,372 | 4.05 | 77 | 156 | 401 | 4.03 | |
North China Mountains | Mountain-Yinshan Eastern Section (II11) | 24,192 | 0.67 | 1,277 | 12.48 | 91 | 279 | 494 | 4.63 |
Mountain-Yanshan Section (II12) | 29,313 | 0.79 | 830 | 15.09 | 119 | 431 | 579 | 7.01 | |
Mountain-Taihang Section (II13) | 20,638 | 0.76 | 945 | 18.03 | 204 | 727 | 549 | 8.42 | |
Hilly Yanshan Section (II21) | 16,687 | 0.77 | 262 | 11.01 | 329 | 2,045 | 616 | 10.37 | |
Hilly Taihang Section (II22) | 15,561 | 0.70 | 238 | 8.22 | 481 | 1,666 | 499 | 12.46 | |
Mountain Basin (II3) | 6,930 | 0.61 | 515 | 2.77 | 366 | 2,255 | 515 | 9.80 | |
North China Plain | Alluvial-Proluvial Fan (III1) | 42,450 | 0.74 | 30 | 1.99 | 1,200 | 7,696 | 533 | 13.09 |
Flood Plain (III2) | 16,643 | 0.74 | 13 | 2.19 | 615 | 1,682 | 528 | 13.63 | |
Yellow River Floodplain (III3) | 5,013 | 0.76 | 24 | 2.08 | 695 | 1,595 | 553 | 13.93 | |
Depression (III4) | 8,544 | 0.73 | 11 | 1.58 | 695 | 5,371 | 538 | 13.32 | |
Alluvial and Coast Plain (III5) | 10,955 | 0.68 | 5 | 1.51 | 1073 | 6,756 | 552 | 12.93 | |
Marine Plain (III6) | 4,627 | 0.47 | 6 | 1.27 | 799 | 17,389 | 559 | 12.74 |
References
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef]
- Wang, L.H.; Tian, F.; Wang, Y.H.; Wu, Z.D.; Schurgers, G.; Fensholt, R. Acceleration of global vegetation greenup from combined effects of climate change and human land management. Glob. Chang. Biol. 2018, 24, 5484–5499. [Google Scholar] [CrossRef] [PubMed]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Jarlan, L.; Mangiarotti, S.; Mougin, E.; Mazzega, P.; Hiernaux, P.; Le Dantec, V. Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model. Remote Sens. Environ. 2008, 112, 1381–1394. [Google Scholar] [CrossRef]
- Mancino, G.; Nole, A.; Ripullone, F.; Ferrara, A. Landsat TM imagery and NDVI differencing to detect vegetation change: Assessing natural forest expansion in Basilicata, southern Italy. iForest 2013, 7, 75–84. [Google Scholar] [CrossRef]
- Peng, D.L.; Zhang, B.; Liu, L.Y.; Fang, H.L.; Chen, D.M.; Hu, Y.; Liu, L.L. Characteristics and drivers of global NDVI-based FPAR from 1982 to 2006. Glob. Biogeochem. Cycle 2012, 26. [Google Scholar] [CrossRef]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Corenblit, D.; Steiger, J. Vegetation as a major conductor of geomorphic changes on the Earth surface: Toward evolutionary geomorphology. Earth Surf. Proc. Landf. 2009, 34, 891–896. [Google Scholar] [CrossRef]
- Yamaura, Y.; Amano, T.; Kusumoto, Y.; Nagata, H.; Okabe, K. Climate and topography drives macroscale biodiversity through land-use change in a human-dominated world. Oikos 2011, 120, 427–451. [Google Scholar] [CrossRef]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Li, S.C.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Dressler, G.; Tucker, C.J.; Pinzon, J.E.; Leimgruber, P.; Dubayah, R.O.; Hurtt, G.C.; Bohning-Gaese, K.; Fagan, W.F. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity. Remote Sens. 2014, 6, 5717–5731. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Dai, A.G.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; de Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.E.; Ge, S.; Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Ma, H.T.; Zhao, Y.B. Exploring the relationship between urbanization and the eco-environment-A case study of Beijing-Tianjin-Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, M.Y.; Lin, Z.S.; Xu, X.J. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 2018, 256, 10–21. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, B.H.; Shi, P.L.; Cudahy, T.; Zhang, J.; Xu, H. Satellite Monitoring the Spatial-Temporal Dynamics of Desertification in Response to Climate Change and Human Activities across the Ordos Plateau, China. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycle 2005, 19. [Google Scholar] [CrossRef]
- Marston, R.A. Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- De la Barrera, F.; Henríquez, C. Vegetation cover change in growing urban agglomerations in Chile. Ecol. Indic. 2017, 81, 265–273. [Google Scholar] [CrossRef]
- Zewdie, W.; Csaplovics, E.; Inostroza, L. Monitoring ecosystem dynamics in northwestern Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation variability. Appl. Geogr. 2017, 79, 167–178. [Google Scholar] [CrossRef]
- Peng, J.; Li, Y.; Tian, L.; Liu, Y.X.; Wang, Y.L. Vegetation Dynamics and Associated Driving Forces in Eastern China during 1999–2008. Remote Sens. 2015, 7, 13641–13663. [Google Scholar] [CrossRef]
- Hu, M.M.; Xia, B.C. A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degrad. Dev. 2019, 30, 359–370. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar]
- Hao, R.F.; Yu, D.Y.; Sun, Y.; Cao, Q.; Liu, Y.; Liu, Y.P. Integrating Multiple Source Data to Enhance Variation and Weaken the Blooming Effect of DMSP-OLS Light. Remote Sens. 2015, 7, 1422–1440. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ji, W.; Guo, Q.H.; Ke, J.H.; Tao, S. Variation in a satellite-based vegetation index in relation to climate in China. J. Veg. Sci. 2004, 15, 219–226. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.X.; Liu, Z.C.; Yang, Y. Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing-Tianjin-Hebei region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Gao, J.B.; Wang, Y.L.; Liu, J.G.; Li, S.C. Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression. Theor. Appl. Climatol. 2015, 120, 507–519. [Google Scholar] [CrossRef]
- Leroux, L.; Bégué, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, L.; Tim, R.M.; Vanniel, T.G.; Yang, Q.; Li, R. Introduction of the professional interpolation software for meteorology data: ANUSPLIN. Meteorol. Mon. 2008, 34, 92–100. [Google Scholar]
- Yang, J.F.; Wan, S.Q.; Deng, W.; Zhang, G.X. Water fluxes at a fluctuating water table and groundwater contributions to wheat water use in the lower Yellow River flood plain, China. Hydrol. Process. 2007, 21, 717–724. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Drewa, P.B.; Platt, W.J.; Moser, E.B. Community structure along elevation gradients in headwater regions of longleaf pine savannas. Plant Ecol. 2002, 160, 61–78. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.K.; Zhou, C.H.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Li, J.; He, C.; Shi, P.; Chen, J.; Gu, Z.; Xu, W. Change Process of Cultivated Land and Its Driving Forces in Northern China during 1983–2001. Acta Geogr. Sin. 2004, 59, 274–282. [Google Scholar]
- Liu, C.Y.; Wang, K.; Meng, S.X.; Zheng, X.H.; Zhou, Z.X.; Han, S.H.; Chen, D.L.; Yang, Z.P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agric. Ecosyst. Environ. 2011, 140, 226–233. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J.; Yearsley, J.M.; Brewer, M.J.; Elston, D.A. Regression analysis of spatial data. Ecol. Lett. 2010, 13, 246–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yuan, J.G. Spatial and Temporal Change of Vegetation in Growing Seasons in Hebei Province Based on SPOT-VGT NDVI. In Proceedings of the 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Changsha, China, 11–14 June 2014. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 2010, 28, 281–298. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression-Modelling Spatial Non-Stationarity. J. R. Stat. Soc. 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Leung, Y.; Mei, C.L.; Zhang, W.X. Statistical test for local patterns of spatial association. Environ. Plan. A 2003, 35, 725–744. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, W.B.; Li, S.C. Modelling Relationship between NDVI and Climatic Factors in China Using Geographically Weighted Regression. Acta Sci. Nat. Univ. Pekin. 2016, 52, 1125–1133. [Google Scholar]
- Nakaya, T.; Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically weighted Poisson regression for disease association mapping. Stat. Med. 2005, 24, 2695–2717. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Sun, Y.L.; Wang, Z.L.; Zhao, T.B. Analysis of the vegetation cover change and the relative role of its influencing factors in north china. J. Nat. Resour. 2015, 30, 12–23. [Google Scholar]
- Jiang, B.; Liang, S.L.; Yuan, W.P. Observational evidence for impacts of vegetation change on local surface climate over northern China using the Granger causality test. J. Geophys. Res.-Biogeosci. 2015, 120, 1–12. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Wang, Z. The spatial-temporal variations of vegetation cover in the Haihe river basin from 2000 to 2013. J. Arid Land Resour. Environ. 2016, 30, 65–70. [Google Scholar]
- Li, Z.; Sun, R.H.; Zhang, J.C.; Zhang, C. Temporal-spatial analysis of vegetation coverage dynamics in Beijing-Tianjin-Hebei metropolitan regions. Acta Ecol. Sin. 2017, 37, 7418–7426. [Google Scholar]
- Meng, D.; Li, X.J.; Gong, H.L.; Qu, Y.T. Analysis of Spatial-Temporal Change of NDVI and Its Climatic Driving Factors in Beijing-Tianjin-Hebei Metropolis Circle from 2001 to 2013. J. Geo-Inf. Sci. 2015, 17, 1001–1007. [Google Scholar]
- Chen, Q.L.; Hua, W.; Xiong, G.M.; Xu, H.; Liu, X.R. Analysis on the Causes of Severe Drought in North China in Winter of 2008–2009. Arid Zone Res. 2010, 27, 182–187. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). The Global Climate in 2011–2015; WMO: Geneva, Switzerland, 2016; pp. 1–28. [Google Scholar]
- Li, Q.Q.; Wang, A.Q.; Zhou, B.; Liu, Y.J.; Sun, C.H.; Wang, D.Q.; Wang, P.L. Global Major Weather and Climate Events in 2014 and the Possible Causes. Meteorol. Mon. 2015, 41, 497–507. [Google Scholar]
- Wang, Y.C.; Sun, Y.L.; Wang, Z.L. Spatial-Temporal Change in Vegetation Cover and Climate Factor Drivers of Variation in the Haihe River Basin 1998–2011. Resour. Sci. 2014, 36, 594–602. [Google Scholar]
- Gong, Z.N.; Zhao, S.Y.; Gu, J.Z. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013. J. Geogr. Sci. 2017, 27, 143–160. [Google Scholar] [CrossRef]
- Wu, X.C.; Liu, H.Y.; Li, X.Y.; Piao, S.L.; Ciais, P.; Guo, W.C.; Yin, Y.; Poulter, B.; Peng, C.H.; Viovy, N.; et al. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys. Res. Lett. 2017, 44, 6173–6181. [Google Scholar] [CrossRef]
- Yan, D.H.; Xu, T.; Girma, A.; Yuan, Z.; Weng, B.S.; Qin, T.L.; Do, P.; Yuan, Y. Regional Correlation between Precipitation and Vegetation in the Huang-Huai-Hai River Basin, China. Water 2017, 9. [Google Scholar] [CrossRef]
- Rishmawi, K.; Prince, S.D.; Xue, Y.K. Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa. Remote Sens. 2016, 8, 910. [Google Scholar] [CrossRef]
- Gong, H.L.; Pan, Y.; Zheng, L.Q.; Li, X.J.; Zhu, L.; Zhang, C.; Huang, Z.Y.; Li, Z.P.; Wang, H.G.; Zhou, C.F. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef]
- Guo, H.P.; Zhang, Z.C.; Cheng, G.M.; Li, W.P.; Li, T.F.; Jiao, J.J. Groundwater-derived land subsidence in the North China Plain. Environ. Earth Sci. 2015, 74, 1415–1427. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Lu, X.; Liu, B.Y.; Wu, D.T. Impacts of Urbanization and Associated Factors on Ecosystem Services in the Beijing-Tianjin-Hebei Urban Agglomeration, China: Implications for Land Use Policy. Sustainability 2018, 10, 4334. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Luo, J.M.; Shen, Y.J.; Qi, Y.Q.; Zhang, Y.C.; Xiao, D.P. Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China. Agric. Syst. 2018, 159, 32–41. [Google Scholar] [CrossRef]
- Zhang, J.T.; Xi, Y.; Li, J. The relationships between environment and plant communities in the middle part of Taihang Mountain Range, North China. Community Ecol. 2006, 7, 155–163. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.R.; Fan, W.; Song, G.H. The Relationship between Secondary Forest and Environmental Factors in the Southern Taihang Mountains. Sci. Rep. 2017, 7, 16431. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, Y.L. Study on Adjustment of Agricultural Planting Structures in China for Adapting to Climate Change. J. Agric. Sci. Technol. 2017, 19, 8–17. [Google Scholar]
- Ji, Y.Z.; Yan, H.M.; Liu, J.Y.; Kuang, W.H.; Hu, Y.F. A MODIS data derived spatial distribution of high-, mediumand low-yield cropland in China. Acta Geogr. Sin. 2015, 70, 766–778. [Google Scholar]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wu, J.S.; Li, W.F.; Peng, J.; Liu, H. Evaluating Saturation Correction Methods for DMSP/OLS Nighttime Light Data: A Case Study from China’s Cities. Remote Sens. 2014, 6, 9853–9872. [Google Scholar] [CrossRef]
- Bao, G.; Qin, Z.H.; Bao, Y.H.; Zhou, Y.; Li, W.J.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef] [Green Version]
Variable Class | Variable Name | Definition and Units | Data Source | Spatial Resolution |
---|---|---|---|---|
Climatic and groundwater | PRE_MN*1 | Annual mean precipitation 1980–2015 (mm/yr) | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences a | 1 km |
TEM_MN*1 | Annual mean temperature 1980–2015 (℃/yr) | 1 km | ||
PRE_ BT*1 | t-test grading of precipitation trends (OLS) during the growing season 2000–2015 | China Meteorological Data Network b | 1 km | |
TEM_ BT*1 | t-test grading of temperature trends (OLS) during the growing season 2000–2015 | 1 km | ||
GRACE*1 | Liquid water equivalent thickness trend (OLS) from GRACE 2003–2015 (cm) | JPL/GRACE-TELLUS c | 1° | |
Geomorphic | ELEVATION*1 | Elevation represents macroscopic landform (m) | Geospatial data cloud d | 30 m |
SLOPE*1 | Slope represents microtopography (°) | 30 m | ||
Socioeconomic activities | NLIGHT*2 | Nighttime light intensity trend (OLS) from DMSP/OLS 2000–2013 | NOAA’s National Geophysical Data Center e | 1 km |
Accessibility | DIST_RIV*1 | Euclidean distance from river (m) | National Catalogue Service for Geographic Information f | vector |
DIST_ROAD*2 | Euclidean distance from main road (m) | |||
Agricultural activities | FERT*2 | t-test grading of fertilizer uses trend (OLS) 2000–2015 | Beijing Municipal Bureau of Statistics g | vector |
Tianjin Bureau of Statistics h | ||||
IRRI*2 | t-test grading of effective irrigated area trend (OLS) 2000–2015 | Hebei Provincial Bureau of Statistics i | ||
Land cover change | LAND*2 | Land cover type change between 2000 and 2015 (6 classes) | Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences j | 30 m |
Initial NDVI | 2000NDVI*3 | NDVI in the growing season of 2000 | Geospatial data cloud d | 500 m |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Sun, R.; Ni, Z. Identification of Natural and Anthropogenic Drivers of Vegetation Change in the Beijing-Tianjin-Hebei Megacity Region. Remote Sens. 2019, 11, 1224. https://doi.org/10.3390/rs11101224
Zhao Y, Sun R, Ni Z. Identification of Natural and Anthropogenic Drivers of Vegetation Change in the Beijing-Tianjin-Hebei Megacity Region. Remote Sensing. 2019; 11(10):1224. https://doi.org/10.3390/rs11101224
Chicago/Turabian StyleZhao, Yinbing, Ranhao Sun, and Zhongyun Ni. 2019. "Identification of Natural and Anthropogenic Drivers of Vegetation Change in the Beijing-Tianjin-Hebei Megacity Region" Remote Sensing 11, no. 10: 1224. https://doi.org/10.3390/rs11101224
APA StyleZhao, Y., Sun, R., & Ni, Z. (2019). Identification of Natural and Anthropogenic Drivers of Vegetation Change in the Beijing-Tianjin-Hebei Megacity Region. Remote Sensing, 11(10), 1224. https://doi.org/10.3390/rs11101224