Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- SIi = sprawl index for metropolitan area i
- S%i = percentage of total population in low-density census tracts in metropolitan area i
- D%i = percentage of total population in high-density census tracts in metropolitan area i
2.2. Definition of Urban Area
2.3. Data and Preprocessing
2.3.1. Satellite Data
2.3.2. Reference Sample Data
2.4. Methods
- VIIRS (i, j) = VIIRS nighttime light luminosity at pixel (i, j)
- MODIS (i, j) = MODIS NDVI at pixel (i, j)
3. Results
3.1. New Urban Extent Maps for CONUS
3.2. Comparing the Four Urban Extent Maps through Quantitative Accuracy Assessment
3.3. Comparing the New Urban Extent with Existing Data Products
4. Conclusions
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects. 2014. Available online: https://esa.un.org/unpd/wup/publications/files/wup2014-highlight.pdf (accessed on 20 January 2018).
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science. 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens. Environ. 2003, 88, 170–186. [Google Scholar] [CrossRef]
- Mills, G. Cities as agents of global change. Int. J. Climatol. 2007, 27, 1849–1857. [Google Scholar] [CrossRef]
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, Z.; He, C.; Yue, H. Urban land extraction using VIIRS nighttime light data: An evaluation of three popular methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Aubrecht, C.; Gunasekera, R.; Ungar, J.; Ishizawa, O. Consistent yet adaptive global geospatial identification of urban–rural patterns: The iURBAN model. Remote Sens. Environ. 2016, 187, 230–240. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 44003–44011. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L.; et al. Globcover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [Google Scholar] [CrossRef]
- Knight, J.; Voth, M. Mapping impervious cover using multi-temporal MODIS NDVI data. IEEE J.-Stars 2011, 4, 303–309. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.; Hu, M.; Zhou, S. Mapping regional urban extent using NPP-VIIRS DNB and MODIS NDVI data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J. Global Urban Footprint; MUAS 2015; ESA-ESRIN: Frascati, Italy, 2015. [Google Scholar]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.J.; Freire, S.; Halkia, S.; Julea, A.M.; Kemper, T.; Soille, P.; Syrris, V. Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014. Publ. Off. Eur. Union JRC Tech. Rep. 2774, 1–67, EUR 27741 EN. [Google Scholar]
- Guo, W.; Li, G.Y.; Ni, W.J.; Zhang, Y.H.; Lu, D.S. Exploring improvement of impervious surface estimation at national scale through integration of nighttime light and proba-v data. Gisci. Remote Sens. 2018, 55, 699–717. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Balk, D.; Pozzi, F.; Yetman, G.; Deichmann, U.; Nelson, A. The distribution of people and the dimension of place: Methodologies to improve the global estimation of urban extents. In Proceedings of the Urban Remote Sensing Conference, International Society for Photogrammetry and Remote Sensing, Tempe, AZ, USA, 14–16 March 2005. [Google Scholar]
- Schneider, A.; Friedl, M.; McIver, D.; Woodcock, C. Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data. Photogramm. Eng. Remote Sens. 2003, 69, 1377–1386. [Google Scholar] [CrossRef]
- Balk, D.L.; Deichmann, U.; Yetman, G.; Pozzi, F.; Hay, S.I.; Nelson, A. Determining global population distribution: Methods, Applications, and Data. Adv. Parasitol. 2006, 62, 119–156. [Google Scholar]
- Center for International Earth Science Information Network (CIESIN)-Columbia University; CUNY Institute fir Demographic Research (CIDR); International Food Policy Institute (IFPRI); The World Bank; Centro Interncional de Agricultura Tropical (CIAT). Global Rural Urban Mapping Project, Version 1 (GRUMPv1): Urban Extent Polygons, Revision 01; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017.
- Kabaria, C.W.; Gilbert, M.; Noor, A.M.; Snow, R.W.; Linard, C. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malar. J. 2017, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High resolution global gridded data for use in population studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Mongomery, M.; Gleick, P. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [Green Version]
- Hugo, G.; Champion, T. New forms of Urbanization: Beyond the Urban-Rural Dichotomy; Routledge: Abingdon, UK, 2003. [Google Scholar]
- McIntyre, N.E.; Knowles-Yánez, K.; Hope, D. Urban ecology as an interdisciplinary field: Differences in the use of “urban” between the social and natural sciences. In Urban Ecology; Springer: Boston, MA, USA, 2008; pp. 49–65. [Google Scholar]
- Wei, C.; Blaschke, T.; Kazakopoulos, P.; Taubenböck, H.; Tiede, D. Is Spatial Resolution Critical in Urbanization Velocity Analysis? Investigations in the Pearl River Delta. Remote Sens. 2017, 9, 80. [Google Scholar] [CrossRef]
- Potere, D.; Schneider, A. A critical look at representations of urban areas in global maps. GeoJournal 2007, 69, 55–80. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1–17. [Google Scholar] [CrossRef]
- ESA (European Space Agency). GlobCover 2009. 2011. Available online: http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf (accessed on 18 January 2018).
- Elvidge, C.; Tuttle, B.; Sutton, P.; Baugh, K.; Howard, A.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, H.; Jiang, S. A Zipf’s law-based method for mapping urban areas using NPP-VIIRS nighttime light data. Remote sensing. Remote Sens. 2018, 10, 130. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, D.; Chen, L.; Wang, H.; Guan, Q. A time series of urban extent in China using DSMP/OLS nighttime light data. PLoS ONE 2018, 13, e0198189. [Google Scholar] [CrossRef]
- Yu, B.L.; Tang, M.; Wu, Q.S.; Yang, C.S.; Deng, S.Q.; Shi, K.F.; Peng, C.; Wu, J.P.; Chen, Z.Q. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlight. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Salmon, B.P.; Olivier, J.C.; Kleynhans, W.; Wessels, K.J.; Bergh, F.V.D.; Steenkamp, K.C. The use of a multilayer perceptron for detecting new human settlements from a time series of MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 873–883. [Google Scholar] [CrossRef]
- Wan, B.; Guo, Q.; Fang, F.; Su, Y.; Wang, R. Mapping US urban extents from MODIS data using one-class classification method. Remote Sens. 2015, 7, 10143–10163. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef]
- Xue, X.Y.; Yu, Z.L.; Zhu, S.C.; Zheng, Q.M.; Weston, M.; Wang, K.; Gan, M.Y.; Xu, H.W. Delineating urban boundaries using Landsat 8 multispectral data and VIIRS nighttime light data. Remote Sens. 2018, 10, 799. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Cai, C. Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification. Remote Sens. 2015, 7, 7671–7694. [Google Scholar] [CrossRef] [Green Version]
- Godinho, S.; Guiomar, N.; Gil, A. Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 151–162. [Google Scholar] [CrossRef]
- Ming, D.; Zhou, T.; Wang, M.; Tan, T. Land cover classification using random forest with genetic algorithm-based parameter optimization. J. Remote Sens. 2016, 10, 035021. [Google Scholar] [CrossRef]
- Walsh, G.M. New Cropland and Rural Settlement Maps of Africa. 2015. Available online: http://africasoils.net/2015/06/07/new-cropland-and-rural-settlement-maps-of-africa/ (accessed on 20 July 2017).
- Yuan, H.; Wiele, C.F.V.D.; Khorram, S. An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens. 2009, 1, 243–265. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable nighttime light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- US Census Bureau. 2010 Census of Population and Housing, Population and Housing Unit Counts; CHP-2-5; U.S. Government Printing Office: Washington, DC, USA, 2012; pp. 20–26.
- Lopez, R. Urban Sprawl in the United States: 1970–2010; Cities and the Environment (CATE). Loyola Marymount University: Los Angeles, CA, USA, 2014; Volume 7. Available online: http://digitalcommons.lmu.edu/cate/vol7/iss1/7 (accessed on 24 January 2018).
- Goldblatt, R.; Deininger, K.; Hanson, G. Utilizing publicly available satellite data for urban research: Mapping built-up land cover and land use in Ho Chi Minh City, Vietnam. Dev. Eng. 2018, 3, 83–99. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C.; Brown de Colstoun, E.C.; Tilton, J.C.; Tan, B. Global Human Built-Up and Settlement Extent (HABSE) Dataset from Landsat; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017.
- Dijkstra, L.; Poelman, H. A Harmonised Definition of Cities and Rural Areas: The New Degree of Urbanization; Directorate-General for Regional and Urban Policy, European Commission: Brussel, Belgium, 2014. [Google Scholar]
- Rozenfeld, H.D.; Rybski, D.; Gabaix, X.; Makse, H.A. The area and population of cities: New insights from a different perspective on cities. Am. Econ. Rev. 2011, 101, 2205–2225. [Google Scholar] [CrossRef]
- Uchida, H.; Nelson, A. Agglomeration Index: Towards a New Measure of Urban Concentration. In Urbanization and Development: Multidisciplinary Perspectives; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Weiss, D.J.; Nelson, A.; Gibson, H.S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Fukushima, T.; Yang, W. Temporal mixture analysis for estimating impervious surface area from multi-temporal MODIS NDVI data in Japan. ISPRS J. Photogramm. Remote Sens. 2012, 72, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city light with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Sutton, P.C. A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Abrahams, A.; Oram, C.; Lozano-Gracia, N. Deblurring DMSP nighttime light: A new method using Gaussian filters and frequencies of illumination. Remote Sens. Environ. 2018, 210, 242–258. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime light. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time light. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- NOAA NCEI. Version 1 VIIRS Day/Night Band Nighttime Light; 2018. Available online: https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (accessed on 10 December 2017).
- Google Earth Engine. MOD13A1.005 Vegetation Indices 16-Day L3 Global 500 m. 2017. Available online: https://explorer.earthengine.google.com/#detail/MODIS%2FMOD13A1 (accessed on 6 December 2017).
- Nery, T.; Sadler, R.; Solis-Aulestia, M.; White, B.; Polyakov, M.; Chalak, M. Comparing supervised algorithms in land use and land cover classification of a Landsat time series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for Big Data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Zhu, Z. Ensemble Methods: Foundations and Algorithms; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gunes, F.; Wolfinger, R.; Tan, P. Stacked Ensemble Models for Improved Prediction Accuracy; SAS Institute, Inc.: Cary, NC, USA, 2017; In Proceedings of SAS Global Forum 2017, April 2–5, Orlando, FL, USA; Available online: http://support.sas.com/resources/papers/proceedings17/SAS0437-2017.pdf (accessed on 20 December 2017).
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef]
- Colstoun, E.C.; Huang, B.C.; Wang, P.; Tilton, J.C.; Tan, B.; Phillips, J.; Niemczura, S.; Ling, P.; Wolfe, R. Documentation for the Global Man-Made Impervious Surface (GMIS) Dataset from Landsat; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017; pp. 1–13.
- Doherty, M.; Nakanishi, H.; Bai, X.; Meyers, J. Relationships between Form, Morphology, Density and Energy in Urban Environments; GEA Background Paper; CSIRO Sustainable Ecosystems: Canberra, Australia, 2009; pp. 1–28. [Google Scholar]
- Dewey, R. The rural-urban continuum: Real but relatively unimportant. Am. J. Sociol. 1960, 66, 60–66. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Dorélien, A.; Balk, D.; Todd, M. What is urban? Comparing a satellite view with the demographic and health surveys. Popul. Dev. Rev. 2013, 39, 413–439. [Google Scholar] [CrossRef]
- Ogashawara, I.; Bastos, V.D.S.B. A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sens. 2012, 4, 3596–3618. [Google Scholar] [CrossRef]
Data Product/Year | Definition of Urban Area | Resolution |
---|---|---|
Global Urban Built-Up Areas 2014 [32] | Urban and built-up areas | 500 m |
Global Rural–Urban Mapping Project 1995 (GRUMP v1) [24] | Urban extent | 927 m |
GlobCover 2009 (GlobCover) [33] | Artificial surfaces and associated areas (urban areas >50%) | 309 m |
MODIS Urban Land Cover 500 m (MODIS 500 m) ca 2001 [10] | Areas dominated by a built environment (>50%), including non-vegetated, human-constructed elements, with the minimum mapping unit >1 km by 1 km | 463 m |
Global Impervious Surface Area 2000–2001 (IMPSA) [34] | Density of impervious surface area | 927 m |
Global Land Cover 2000 (GLC2000) [35] | Artificial surfaces and associated areas | 988 m |
MODIS Urban Land Cover 1 km (MODIS 1 km) ca 2001 [22] | Urban and built-up areas | 927 m |
(a) | |||||
Classified Data | Reference Data | Total | User’s Accuracy | Kappa Coefficient | |
Urban | Non-Urban | ||||
Urban | 1240 | 90 | 1330 | 93.23% | |
Non-Urban | 17 | 1130 | 1147 | 98.52% | |
Total | 1257 | 1220 | 2477 | ||
Producer’s Accuracy | 98.65% | 92.62% | 95.68% (Overall Accuracy) | 0.9121 | |
(b) | |||||
Classified Data | Reference Data | Total | User’s Accuracy | Kappa Coefficient | |
Urban | Non-Urban | ||||
Urban | 1243 | 107 | 1350 | 92.07% | |
Non-Urban | 14 | 1113 | 1127 | 98.76% | |
Total | 1257 | 1220 | 2477 | ||
Producer’s Accuracy | 98.89% | 91.23% | 95.12% (Overall Accuracy) | 0.9023 | |
(c) | |||||
Classified Data | Reference Data | Total | User’s Accuracy | Kappa Coefficient | |
Urban | Non-Urban | ||||
Urban | 1235 | 82 | 1317 | 93.77% | |
Non-Urban | 22 | 1138 | 1160 | 98.10% | |
Total | 1257 | 1220 | 2477 | ||
Producer’s Accuracy | 98.25% | 93.28% | 95.80% (Overall Accuracy) | 0.9159 | |
(d) | |||||
Classified Data | Reference Data | Total | User’s Accuracy | Kappa Coefficient | |
Urban | Non-Urban | ||||
Urban | 1236 | 88 | 1324 | 93.35% | |
Non-Urban | 21 | 1132 | 1153 | 98.18% | |
Total | 1257 | 1220 | 2477 | ||
Producer’s Accuracy | 98.33% | 92.79% | 95.60% (Overall Accuracy) | 0.9119 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; de Sherbinin, A.; Zhan, Y. Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. Remote Sens. 2019, 11, 1247. https://doi.org/10.3390/rs11101247
Liu X, de Sherbinin A, Zhan Y. Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. Remote Sensing. 2019; 11(10):1247. https://doi.org/10.3390/rs11101247
Chicago/Turabian StyleLiu, Xue, Alex de Sherbinin, and Yanni Zhan. 2019. "Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data" Remote Sensing 11, no. 10: 1247. https://doi.org/10.3390/rs11101247
APA StyleLiu, X., de Sherbinin, A., & Zhan, Y. (2019). Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. Remote Sensing, 11(10), 1247. https://doi.org/10.3390/rs11101247