Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. LPJ Model
3. Results
3.1. The LPJ Model Calibration and NPP Simulation in the Yangtze River Basin
3.2. The Spatial and Temporal Distribution of the Forest NPP in the Yangtze River Basin
3.3. The Impacts of Climate Change and Human Activities on the Forest NPP in the Yangtze River Basin
4. Discussion
5. Conclusions
- (1)
- This study examined the general agreement between temporal trends in forest NDVI and the NPP in the Yangtze River basin. The mean annual forest NPP and NDVI in the Yangtze River basin from 1982 to 2013 exhibited generally decreasing trends from the southeast to northwest. The southeastern part of the Yangtze River basin has satisfactory hydrothermal conditions, which could meet the needs of vegetation growth and high yield. The northwest region has low productivity due to poor water and heat conditions.
- (2)
- By performing a comparative analysis of temperature and precipitation for the past 30 years, we concluded that the forest NPP and NDVI in the Yangtze River basin were sensitive to climate changes. Positive correlations can be found between the forest NPP (NDVI) and temperature in most of the study area. The forest NPP and NDVI with the annual precipitation revealed the positive correlations in around 58% of the study area. Moreover, large-scale drought event in the years 2004–2005 has led the NPP to obviously decrease in the middle and lower Yangtze River basin.
- (3)
- Major ecological projects have played a positive role in improving forest coverage and forest protection. The increase in forest areas from the year of 2000 to 2010 was larger than that from 1990 to 2000. The forest areas in the Yangtze River basin increased by 1409 km2 from 2000 to 2010. Although the forest NPP increased during the past 30 years, the increasing rate for the NDVI was higher than that of NPP, especially after the year 2000.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, C.; Song, X.; Ren, H. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Erşahin, S.; Bilgili, B.C.; Dikmen, U.; Ercanli, I. Net Primary Productivity of Anatolian Forests in Relation to Climate, 2000–2010. For. Sci. 2016, 62, 698–709. [Google Scholar] [CrossRef]
- Kimball, J.S.; Zhao, M.; McDonald, K.C.; Running, S.W. Satellite Remote Sensing of Terrestrial Net Primary Production for the Pan-Arctic Basin and Alaska. Mitig. Adapt. Strat. Glob. Chang. 2006, 11, 783–804. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Li, Z.; Ye, X.; Wang, M.; Gong, L. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chin. Geogr. Sci. 2016, 26, 35–47. [Google Scholar] [CrossRef]
- Exbrayat, J.; Liu, Y.Y.; Williams, M. Impact of deforestation and climate on the Amazon Basin’s above-ground biomass during 1993–2012. Sci. Rep. 2017, 7, 15615. [Google Scholar] [CrossRef] [PubMed]
- Rafique, R.; Zhao, F.; de Jong, R.; Zeng, N.; Asrar, G. Global and Regional Variability and Change in Terrestrial Ecosystems Net Primary Production and NDVI: A Model-Data Comparison. Remote Sens. 2016, 8, 177. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Tong, C. Comparison of NPP estimation by remote sensing-based parametric model and ecological processed model over forest at regional scale. In Proceedings of the 2014 3rd International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Changsha, China, 11–14 June 2014; pp. 318–322. [Google Scholar]
- Jiang, C.; Wu, Z.F.; Cheng, J.; Yu, Q.; Rao, X.Q. Impacts of urbanization on net primary productivity in the Pearl River Delta, China. Int. J. Plant Prod. 2015, 9, 581–598. [Google Scholar]
- Tang, F.D.; Han, S.J.; Zhang, J.H. Carbon dynamics of broad-leaved Korean pine forest in Changbai Mountains and its response to climate change. Chin. J. Plant Ecol. 2009, 20, 1285–1292. [Google Scholar]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Yang, G.; Li, H.; Su, W. Impacts of China’s Three Gorges Dam Project on net primary productivity in the reservoir area. Sci. Total Environ. 2011, 409, 4656–4662. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Jiang, W.; Hou, Y.; Chen, Z.; Jia, K. Dynamic Change Analysis of Surface Water in the Yangtze River Basin Based on MODIS Products. Remote Sens. 2018, 10, 1025. [Google Scholar] [CrossRef]
- Sun, G.D. Simulation of potential vegetation distribution and estimation of carbon flux in China from 1981 to 1998 with LPJ dynamic global vegetation model. Climatic. Environ. Res. 2009, 14, 341–351. [Google Scholar]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Chang, J.; Tian, J.; Zhang, Z.; Chen, X.; Chen, Y.; Chen, S.; Duan, Z. Changes of Grassland Rain Use Efficiency and NDVI in Northwestern China from 1982 to 2013 and Its Response to Climate Change. Water 2018, 10, 1689. [Google Scholar] [CrossRef]
- Zhang, F.; Ju, W.; Shen, S.; Wang, S.; Yu, G.; Han, S. Variations of Terrestrial Net Primary Productivity in East Asia. Terr. Atmos. Ocean. Sci. 2012, 23, 425–437. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Liu, S.; Wang, Q. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: Impacts of climate change and human activities. Chin. Geogr. Sci. 2017, 27, 948–962. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Z.; Li, J.; Gang, C.; Zhang, C. Desertification dynamic and the relative roles of climate change and human activities in desertification in the Heihe River Basin based on NPP. J. Arid Land 2013, 5, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Zhang, K.; Cheng, X.; Band, L.E.; Zhang, Q. Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosci. 2014, 119, 1092–1109. [Google Scholar] [CrossRef]
- Wu, Y.; WU, Z.; Yu, S. Quantitative assessment of the impacts of human activities on net primary productivity. Chin. J. Plant Ecol. 2017, 28, 2535–2544. [Google Scholar]
- Tian, J.; Chang, J.; Zhang, Z.; Wang, Y.; Wu, Y.; Jiang, T. Influence of Three Gorges Dam on Downstream Low Flow. Water 2019, 11, 65. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Ni, J. Net primary productivity in forests of China: Scaling-up of national inventory data and comparison with model predictions. For. Ecol. Manag. 2003, 176, 485–495. [Google Scholar] [CrossRef]
- Sitch, S.; Brovkin, V.; von Bloh, W.; van Vuuren, D.; Eickhout, B.; Ganopolski, A. Impacts of future land cover changes on atmospheric CO2 and climate. Glob. Biogeochrm. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Beer, C.; Lucht, W.; Gerten, D.; Thonicke, K.; Schmullius, C. Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Glob. Biogeochem. Cycles 2007, 2. [Google Scholar] [CrossRef]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. Special Paper: A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate. J. Biogeogr. 1992, 19, 117–134. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Chang. 2013, 120, 755–769. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, D.; Wu, S. Climate change risk to forests in China associated with warming. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, N.; Su, H.; Sang, W. Simulation and Analysis on future carbon balance of three deciduous forests in Beijing mountain area warm temperate zone of China. J. Plant Ecol. 2009, 33, 516–534. [Google Scholar]
- Xu, C.Y. Statistical Analysis of Parameters and Residuals of a Conceptual Water Balance Model-Methodology and Case Study. Water 2001, 15, 75–92. [Google Scholar]
- Zhang, Z.; Chang, J.; Xu, C.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef]
- Ke, J.H.; Piao, S.L.; Fang, J.Y. NPP and its spatio-temporal patterns in the Yangtze River watershed. Acta Phytoecol. Sin. 2003, 27, 764–770. [Google Scholar]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 2011, 115, 438–451. [Google Scholar] [CrossRef]
- Mariappan, N. Net Primary Productivity Estimation of Eastern Ghats using Multispectral MODIS Data. Int. J. Geom. Geosci. 2010, 1, 406–413. [Google Scholar]
- Zhang, Z.; Chen, X.; Xu, C.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river–lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Zhang, K.; Cheng, X.; Zhang, Q. Spatial-temporal variability of terrestrial vegetation productivity in the Yangtze River Basin during 2000–2009. J. Plant Ecol. 2014, 7, 10–23. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing–Tianjin Sand Source Region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, T.; Zhao, Z.; Sun, C.; Liu, J.; Shao, Q.; Fan, J.; Wang, J. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manag. 2013, 117, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Hasenauer, H.; Petritsch, R.; Zhao, M.; Boisvenue, C.; Running, S.W. Reconciling satellite with ground data to estimate forest productivity at national scales. For. Ecol. Manag. 2012, 276, 196–208. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Genovese, V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim. Chang. 2012, 115, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Gang, C.; Zhou, W.; Li, J.; Chen, Y.; Mu, S.; Ren, J.; Chen, J.; Groisman, P.Y. Assessing the spatiotemporal variation in distribution, extent and NPP of terrestrial ecosystems in response to climate change from 1911 to 2000. PLoS ONE 2013, 8, e80394. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Lin, Z. Relative importance of climate changes at different time scales on net primary productivity—A case study of the Karst area of northwest Guangxi, China. Environ. Monit. Assess. 2017, 189, 539. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.J.; Cai, Y.L. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environ. Geol. 2008, 54, 1185–1195. [Google Scholar] [CrossRef]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Zhou, S.; Sun, B.; Gao, Z. Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing-Tianjin Sand Source Region, China? A remote sensing approach. Geogr. Sci. 2016, 26, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Moraes, E.C.; Franchito, S.H.; Rao, V.B. Amazonian Deforestation: Impact of Global Warming on the Energy Balance and Climate. J. Appl. Meteorol. Clim. 2013, 52, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Hu, H.; Li, P.; Li, N.; Fang, J. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci. China Life Sci. 2013, 56, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Huimin, Y.; Fengxue, G.; Zhongen, N.; Mei, H. Net Primary Productivity Increased on the Loess Plateau Following Implementation of the Grain to Green Program. J. Res. Ecol. 2017, 8, 413–421. [Google Scholar] [CrossRef]
Sites | Longitude (Degree) | Latitude (Degree) | Period (Year) | Observed (gC·m−2·y−1) | Simulated (gC·m−2·y−1) | |
---|---|---|---|---|---|---|
1 | Qianyanzhou | 115.05 | 26.73 | 2003–2008 | 487.52 | 521.39 |
2 | Huitong | 109.75 | 26.83 | 2008–2009 | 268.5 | 350.56 |
3 | Ningxiang | 112.57 | 28.33 | 2013–2013 | 428.8 | 453.84 |
4 | Anji | 119.67 | 30.47 | 2011–2013 | 585.4 | 534.82 |
5 | Anqing | 117.03 | 30.5 | 2005–2007 | 506.1 | 508.51 |
6 | Badong | 110.38 | 31.03 | 1961–1990 | 735 | 578.37 |
7 | Fangxian | 101.72 | 32.05 | 1961–1990 | 540 | 573.72 |
8 | Shennongjia | 110.67 | 31.75 | 1961–1990 | 549 | 538.93 |
9 | Yonghexiang | 104 | 33 | 1961–1990 | 551 | 580.9 |
10 | Baiyu | 98.83 | 31.23 | 1961–1990 | 550 | 564.13 |
11 | Maerkangxian | 102.22 | 31.92 | 1961–1990 | 618 | 606.6 |
12 | Jiuzhailinchang | 103.9 | 33.28 | 1961–1990 | 573 | 588.75 |
13 | Longkangxiang | 104.2 | 33.23 | 1961–1990 | 597 | 579.16 |
14 | Xingshan | 110.73 | 31.22 | 1961–1990 | 376 | 447.08 |
15 | Songtao | 109.18 | 28.17 | 1961–1990 | 778 | 620.31 |
16 | Tongzi | 106.8 | 28.13 | 1961–1990 | 768 | 585.9 |
17 | Zhongdianxian | 99.7 | 27.8 | 1961–1990 | 730 | 661.74 |
Data | Period | Broad-Leaf Forests | Needle-Leaf Forests | Mixed Forests | Shrubs |
---|---|---|---|---|---|
LPJ | 1982–2013 | 543.66 | 548.01 | 538.75 | 532.47 |
MODIS [23] | 2000–2009 | 1463 ± 247.05 | 633 ± 199.4 | 631 ± 191.2 | 489 ± 271.8 |
CASA [36] | 1982–1999 | 633.66 | 295.46 | — | 286.64 |
AVIM2 [23] | 2000–2000 | 469 | 249 | 625 | 561 |
Code | Ecological Projects | Start Time | Distribution |
---|---|---|---|
1 | Natural Forest Resources Protection | 2000 | Middle and upper reaches |
2 | Yangtze River Shelter Forest | 1989 | entire Yangtze |
3 | Returning Farmland to Forest | 1999 | entire Yangtze |
Year | Forests | Croplands | Grasslands | Barren | Waters | Urban |
---|---|---|---|---|---|---|
1990 | 727,907 | 507,194 | 414,788 | 58,358 | 50,684 | 24,051 |
1995 | 732,503 | 499,127 | 426,116 | 49,969 | 48,730 | 26,475 |
2000 | 726,616 | 502,204 | 416,113 | 58,467 | 51,244 | 28,277 |
2005 | 727,692 | 497,125 | 415,433 | 58,116 | 52,688 | 31,871 |
2010 | 728,025 | 493,487 | 414,927 | 58,285 | 52,971 | 35,235 |
2000 minus 1990 | −1291 | −4990 | 1,325 | 109 | 560 | 4226 |
Percent | −0.18 | −0.98 | 0.32 | 0.19 | 1.10 | 17.57 |
2010 minus 2000 | 1409 | −8717 | −1186 | −182 | 1727 | 6958 |
Percent | 0.19 | −1.74 | −0.29 | −0.31 | 3.37 | 24.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, Z.; Kong, R.; Chang, J.; Tian, J.; Zhu, B.; Jiang, S.; Chen, X.; Xu, C.-Y. Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sens. 2019, 11, 1451. https://doi.org/10.3390/rs11121451
Zhang F, Zhang Z, Kong R, Chang J, Tian J, Zhu B, Jiang S, Chen X, Xu C-Y. Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sensing. 2019; 11(12):1451. https://doi.org/10.3390/rs11121451
Chicago/Turabian StyleZhang, Fengying, Zengxin Zhang, Rui Kong, Juan Chang, Jiaxi Tian, Bin Zhu, Shanshan Jiang, Xi Chen, and Chong-Yu Xu. 2019. "Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities" Remote Sensing 11, no. 12: 1451. https://doi.org/10.3390/rs11121451
APA StyleZhang, F., Zhang, Z., Kong, R., Chang, J., Tian, J., Zhu, B., Jiang, S., Chen, X., & Xu, C. -Y. (2019). Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sensing, 11(12), 1451. https://doi.org/10.3390/rs11121451