Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images
Abstract
:1. Introduction
- The relationship between input reflectance and vegetation parameters is scale-dependent [19] so one would need to develop and characterize retrieval algorithms for each sensor if products were to be combined.
- We use a linear algorithm for combining reflectance quantities [20] that we hypothesize will result in linear estimation errors of both reflectance as a function of differences between actual and assumed temporal changes. In this case, the reflectance estimation error will be a function of the temporal interpolation interval duration during periods of monotonic change in reflectance.
- Can we retrieve vegetation biophysical variables from synthetic S2-LIKE images with subweekly frequency in mid-latitude regions?
- What is the uncertainty of vegetation biophysical variables estimates from S2-LIKE images compared to estimates from S2-MSI images and in situ data and how does the uncertainty change with temporal gap size.
2. Study Area and Datasets
2.1. Study Area
2.2. S2-MSI Images
2.3. MODIS Images
2.4. In Situ Measurements
3. Methodology
3.1. Preprocessing of S2-MSI and MODIS Images
- Converting Top of Atmosphere (TOA) S2-MSI reflectance data to atmospherically corrected surface reflectance data using Sen2Cor processor (Version 2.4.0) [37]. Sen2Cor generates also a Scene Classification Map (SCL) that is used further to mask undesirable pixels from S2-MSI images (only pixels labeled as bare soil or vegetated were retained). S2-MSI and S2-LIKE products were only compared and validated over bare soil or vegetated pixels as identified in the corresponding SCL map.
- Reprojecting and resampling MODIS data to match the geographic coordinate system and spatial resolution (20 m) defined for S2-MSI data using the MODIS Projection Tool [38].
3.2. Blending Approach
3.3. Estimation of Vegetation Biophysical Variables
3.4. Intercomparison and Validation Strategies
4. Results
4.1. Evaluation of Synthetic Surface Reflectance Images
4.2. Evaluation of Vegetation Biophysical Variables Estimated from Synthetic Images
4.3. Validation of Vegetation Biophysical Variables Estimated from Synthetic Images
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Terrestrial Essential Climate Variables for Climate Change Assessment, Mitigation and Adaptation. Biennial Report Supplement. 2008. Available online: www.fao.org/3/a-i0197e.pdf (accessed on 1 May 2019).
- Malenovsky, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; Garcia-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Global Climate Observing System. The Global Observing System for Climate: Implementation Needs. GCOS Steering Committee at Their 24th Meeting in Guayaquil. 2016. Available online: https://unfccc.int/sites/default/files/gcos_ip_10oct2016.pdf (accessed on 1 May 2019).
- European Space Agency. EO4SD-Earth Observation for Sustainable Development. Agriculture and Rural Development/Service Portfolio. 2019. Available online: https://www.eo4idi.eu/sites/default/files/eo4sd_agri_portfolio_170529_singlepag.pdf (accessed on 1 May 2019).
- Roy, D.P.; Yan, L. Robust landsat-based crop time series modelling. Remote Sens. Environ. 2018, 120, 91–101. [Google Scholar]
- The Committee on Earth Observation Satellites. The CEOS Database—Catalogue of Satellite Missions. 2019. Available online: http://database.eohandbook.com/ database/missiontable.aspx (accessed on 1 May 2019).
- Zhou, F.; Zhang, A. Methodology for estimating availability of cloud-free image composites: A case study for southern Canada. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 17–31. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services. Remote Sens. Environ. 2012, 20, 25–36. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products, Version 1.1. 2016. Available online: Step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 1 May 2019).
- Camacho, F.; Baret, F.; Weiss, M.; Fernandes, R.; Berthelot, B.; Sánchez, J.; Latorre, C.; García-Haro, J.; Duca, R. Validación de Algoritmos Para la Obtención de Variables Biofísicas con Datos Sentinel2 en la ESA: Proyecto VALSE-2. XV Congreso de la Asociación Española de Teledetección, INTA, Torrejón de Ardoz, Spain. 2013. Available online: https:// doi.org/10.13140/RG.2.1.4655.0241 (accessed on 1 May 2019).
- Djamai, N.; Fernandes, R.; Weiss, M.; McNairn, H.; Goita, K. Validation of the sentinel simplified level 2 product prototype processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data. Remote Sens. Environ. 2019, 225, 416–430. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hilker, T.; White, J.C.; Coops, N.C.; Masek, J.G.; Pflugmacher, D.; Crevier, Y. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 2015, 170, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Junchang, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.; Roger, J.L.; Skakun, S.V.; Justice, C. The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; De Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Lauvernet, C.; Baret, F.; Hascoet, L.; Buis, S. Multitemporal-patch ensemble inversion of coupled surface-atmosphere radiative transfer models for land surface characterization. Remote Sens. Environ. 2008, 112, 851–861. [Google Scholar] [CrossRef]
- Hill, T.C.; Quaife, T.; Williams, M. A data assimilation method for using low-resolution Earth observation data in heterogeneous ecosystems. J. Geophys. Res. 2011, 116, D08117. [Google Scholar] [CrossRef]
- Pinty, B.; Lavergne, T.; Voßbeck, M.; Kaminski, T.; Aussedat, O.; Giering, R.; Gobron, N.; Taberner, M.; Verstraete, M.M.; Widlowski, J.L. Retrieving surface parameters for climate models from moderate resolution imaging spectroradiometer (MODIS)—Multiangle imaging spectroradiometer (MISR) albedo products. J. Geophys. Res. 2007, 112, D10116. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Zhang, Y.; Knyazikhin, Y.; Bogaert, J.; Myneni, R.B. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [Google Scholar] [CrossRef]
- Zhong, D.; Zhou, F. A prediction smooth method for blending landsat and moderate resolution imagine spectroradiometer images. Remote Sens. 2018, 10, 1371. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F.; Gao, F. A spatio-temporal enhancement method for medium resolution LAI (STEM-LAI). Int. J. Appl. Earth Obs. Geoinf. 2016, 7, 15–29. [Google Scholar] [CrossRef]
- Yu, T.; Sun, R.; Xiao, Z.; Zhang, Q.; Wang, J.; Liu, G. Generation of high resolution vegetation productivity from a downscaling method. Remote Sens. 2018, 10, 1748. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Zhu, Z.; Gao, F.; Tang, H.; Xin, X.; Ding, L.; Shen, B.; Liu, J.; Chen, B.; et al. Mapping daily leaf area index at 30 m resolution over a meadow steppe area by fusing Landsat, Sentinel-2A and MODIS data. Int. J. Remote Sens. 2018, 39, 9025–9053. [Google Scholar] [CrossRef]
- Shang, J.; Liu, J.; Huffman, T.; Qian, B.; Pattey, E.; Wang, J.; Zhao, T.; Geng, X.; Kroetsch, D.; Dong, T.; et al. Estimation of crop leaf area index using Landsat-8 and Rapideye images. J. Appl. Remote Sens. 2014, 8, 085196. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth. Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 land cover of canada: local optimization methodology and product development. Remote Sens. 2017, 9, 1098. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 1 May 2019).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- The United States Geological Survey. Earth Explore Data Portal. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 May 2019).
- Bhuiyan, H.A.K.M.; McNairn, H.; Powers, J.; Friesen, M.; Pacheco, A.; Jackson, T.J.; Cosh, M.H.; Colliander, A.; Berg, A.; Rowlandson, T.; et al. Assessing SMAP soil moisture scaling and retrieval in the Carman (Canada) study site. Vadose Zone J. 2018, 17, 180132. [Google Scholar] [CrossRef]
- McNairn, H.; Jackson, T.J.; Powers, J.; Bélair, S.; Berg, A.; Bullock, P.; Colliander, A.; Cosh, M.H.; Kim, S.B.; Magagi, R.; et al. SMAPVEX16 Database Report. 2017. Available online: http://smapvex16-mb.espaceweb.usherbrooke.ca/documents/SMAPVEX16-MB_Experimental_Plan.pdf (accessed on 1 May 2019).
- Fernandes, R. Canada Centre for Remote Sensing Protocol for In-Situ Leaf Area Index Using Digital Hemispherical Photography Using the INRA CANEYE. Analysis Systemi; Canada Centre for Remote Sensing Report Series: Ottawa, ON, Canada, 2019. [Google Scholar]
- European Space Agency. The Sentinel Application Platform (SNAP). Available online: http://step.esa.int/main/toolboxes/snap/ (accessed on 1 May 2019).
- Mueller-Wilm, U.; Devignot, O.; Pessiot, L. Sen2Cor Configuration and User Manual. S2-PDGS-MPC-L2A-SUM-V2.4. 2017. Available online: http://step.esa.int/thirdparties/sen2cor/2.4.0/Sen2Cor_240_Documenation_PDF/S2-PDGS-MPC-L2A-SUM-V2.4.0.pdf (accessed on 1 May 2019).
- The EOSDIS Distributed Active Archive Centers. The MODIS Projection Tool 3.3. Available online: https://earthdata.nasa.gov/earth-observation-data/tools/ (accessed on 1 May 2019).
- Wolf, P.R. Survey Measurement Adjustments by Least Squares. In The Surveying Handbook; Springer: Boston, MA, USA, 1995; pp. 383–413. [Google Scholar]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric correction inter-comparison exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef]
- Djamai, N.; Fernandes, R. Comparison of SNAP-derived sentinel-2A L2A product to ESA product over Europe. Remote Sens. 2018, 10, 926. [Google Scholar] [CrossRef]
- ESA Sentinel-2 Team. GMES Sentinel-2 Mission Requirements Document. EOP-SM/1163/MR-dr. Available online: https://earth.esa.int/pub/ESA_DOC/GMES_Sentinel2_MRD_issue_2.0_update.pdf (accessed on 1 May 2019).
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.G.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Chen, C.; Yang, B.; Liu, Z.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Evaluation of MODIS LAI/FPAR product Collection 6. Part 1: Consistency and improvements. Remote Sens. 2016, 8, 359. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Canisius, F.; Fernandes, R.; Chen, J. Comparison and evaluation of medium resolution imaging spectrometer leaf area index products across a range of land use. Remote Sens. Environ. 2010, 114, 950–960. [Google Scholar] [CrossRef]
- Fernandes, R.; Plummer, S.; Nightingale, J. Global Leaf Area Index Product Validation Good Practices. Committee of Earth Observing Systems Working Group on Calibration and Validation; CEOS: Rome, Italy, 2014; p. 75. [Google Scholar]
- CEOS Working Group on Calibration and Validation. Land Product Validation Subgroup. Available online: https://lpvs.gsfc.nasa.gov/ (accessed on 10 June 2019).
S2-MSI | MODIS | |||||
---|---|---|---|---|---|---|
Band Name | Band ID | Bandwidth (nm) | Spatial Resolution (m) | Band ID | Bandwidth (nm) | Spatial Resolution (m) |
Blue | b2 | 439–533 | 10 | b3 | 459–479 | 500 |
Green | b3 | 538–583 | 10 | b4 | 545–565 | 500 |
Red | b4 | 646–684 | 10 | b1 | 620–670 | 500 |
Red-edge 1 | b5 | 695–714 | 20 | - | - | |
Red-edge 2 | b6 | 731–749 | 20 | - | - | |
Red-edge 3 | b7 | 769–797 | 20 | - | - | |
Near-Infrared (NIR) | b8A | 837–881 | 20 | b2 | 841–876 | 500 |
Shortwave Infrared (SWR1) | b11 | 1539–1682 | 20 | b6 | 1628–1652 | 500 |
Shortwave Infrared (SWR2) | b12 | 2078–2320 | 20 | b7 | 2105–2155 | 500 |
DOY | S2-MSI (Cloud Cover %) | S2-LIKE (Start–End Dates) | T [Days] | In situ Data |
---|---|---|---|---|
122 | ~1% | - | - | |
125 | ~1% | 122–142 | 3 | |
142 | ~2% | 125–162 | 17 | |
162 | ~1% | 142–165 | 3 | |
165 | ~1% | 162–172 | 3 | x |
172 | ~1% | 165–175 | 3 | x |
175 | ~1% | 172–212 | 3 | |
202 | ~66% | 175–212 | 10 | x |
212 | ~2% | 175–215 | 3 | |
215 | ~1% | 212–235 | 3 | |
235 | ~1% | 215–242 | 7 | |
242 | ~4% | 235–252 | 7 | |
245 | ~11% | 242–252 | 3 | |
252 | ~0% | 242–272 | 10 | |
272 | ~4% | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djamai, N.; Zhong, D.; Fernandes, R.; Zhou, F. Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images. Remote Sens. 2019, 11, 1547. https://doi.org/10.3390/rs11131547
Djamai N, Zhong D, Fernandes R, Zhou F. Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images. Remote Sensing. 2019; 11(13):1547. https://doi.org/10.3390/rs11131547
Chicago/Turabian StyleDjamai, Najib, Detang Zhong, Richard Fernandes, and Fuqun Zhou. 2019. "Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images" Remote Sensing 11, no. 13: 1547. https://doi.org/10.3390/rs11131547
APA StyleDjamai, N., Zhong, D., Fernandes, R., & Zhou, F. (2019). Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images. Remote Sensing, 11(13), 1547. https://doi.org/10.3390/rs11131547