Spatial Forecasting of the Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study of Nuwara Eliya, Sri Lanka (1996–2037)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Nuwara Eliya, Sri Lanka
2.2. Data Processing
2.3. Overall Workflow
2.4. LULC Classification
2.5. Accuracy Assessment
2.6. Land Change Modeler
2.6.1. Modeling Variables Selection and Creating Transition Potential Maps
2.6.2. Transition Matrices
2.6.3. LULC Simulation and Model Validation
2.7. Urban–Rural Gradient Analysis
3. Results
3.1. Accuracy of LULC Maps
3.2. Spatial-temporal Changes in LULC
3.3. LULC Modeling and Simulation
3.4. LULC Changes along the Urban–rural Gradient
4. Discussion
4.1. Spatiotemporal LULC Changes and Driving Forces
4.2. Landscape and Urban Planning in Nuwara Eliya
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Built-up | Forest | Agricultural Land | Other Land | Water | Total | User’s Accuracy (%) | |
Built-up | 72 | 8 | 6 | 3 | 0 | 89 | 80.9 |
Forest | 2 | 165 | 10 | 3 | 3 | 183 | 90.2 |
Agricultural land | 5 | 17 | 140 | 2 | 2 | 166 | 84.3 |
Other land | 2 | 2 | 3 | 34 | 1 | 42 | 81.0 |
Water | 0 | 2 | 2 | 0 | 16 | 20 | 80.0 |
Total | 81 | 194 | 161 | 42 | 22 | 500 | |
Producer’s accuracy (%) | 88.9 | 85.1 | 87.0 | 81.0 | 72.7 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Built-up | Forest | Agricultural Land | Other Land | Water | Total | User’s Accuracy (%) | |
Built-up | 98 | 2 | 5 | 0 | 0 | 105 | 93.3 |
Forest | 3 | 182 | 8 | 0 | 0 | 193 | 94.3 |
Agricultural land | 4 | 5 | 155 | 1 | 1 | 166 | 93.4 |
Other land | 0 | 0 | 1 | 5 | 1 | 7 | 71.4 |
Water | 0 | 1 | 1 | 1 | 26 | 29 | 89.7 |
Total | 105 | 190 | 170 | 7 | 28 | 500 | |
Producer’s accuracy (%) | 93.3 | 95.8 | 91.2 | 71.4 | 92.9 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Built-up | Forest | Agricultural Land | Other Land | Water | Total | User’s Accuracy (%) | |
Built-up | 110 | 3 | 3 | 1 | 0 | 117 | 94.0 |
Forest | 5 | 160 | 7 | 1 | 0 | 173 | 92.5 |
Agricultural land | 3 | 2 | 135 | 2 | 1 | 143 | 94.4 |
Other land | 2 | 3 | 2 | 33 | 1 | 41 | 80.5 |
Water | 0 | 1 | 1 | 0 | 24 | 26 | 92.3 |
Total | 120 | 169 | 148 | 37 | 26 | 500 | |
Producer’s accuracy (%) | 91.7 | 94.7 | 91.2 | 89.2 | 92.3 |
Appendix B
## Spatial Forecasting of the Landscape and its Impact on Agricultural Land in Rapidly Urbanizing Hill Stations in South Asia: A Case Study of Nuwara Eliya, Sri Lanka (1996-2037)## ## We have used the following R script for the LULC classification## ###download basic pakages ### install.packages("sp", dependencies = TRUE) install.packages("rgdal", dependencies = TRUE) install.packages("raster", dependencies = TRUE) install.packages("RStoolbox", dependencies = TRUE) install.packages("ggplot2", dependencies = TRUE) install.packages("grid", dependencies = TRUE) install.packages("gridExtra", dependencies = TRUE) install.packages("reshape", dependencies = TRUE) install.packages("rasterVis", dependencies = TRUE) #### Download classification pakeges### install.packages("caretEnsemble", dependencies = TRUE) install.packages("kknn", dependencies = TRUE) install.packages("ranger", dependencies = TRUE) install.packages("maptree", dependencies = TRUE) ###Load basic packages### library(sp) library(rgdal) library(raster) library(RStoolbox) library(ggplot2) library(gridExtra) library(grid) library(reshape) library(rasterVis) ####LOad classification pakages### library(caret) library(caretEnsemble) library(e1071) library(kknn) library(plyr) library(ranger) library(rpart) library(nnet) library(kernlab) library(maptree) #### Set directory – you can add your own directory ### setwd("I:\\Kandy") #### Load composite image ### rasList=list.files(getwd(),pattern="img$", full.names=TRUE) rasVars<- stack(rasList) rasVars #### Plot band ### Kandy <- plot(rasVars) Kandy <- plotRGB(rasVars, r=4, g=3, b=2, stretch="lin") ### Load point data (tranning data)### ta_data <- readOGR(getwd(), "GCP") #### Test ##### str(ta_data) ta_data$Name <- as.factor(ta_data$Name) table(ta_data$Name) #### Training data summary #### str(ta_data) ta<-as.data.frame(extract(rasVars, ta_data)) ta_data@data=data.frame(ta_data@data,ta[match(rownames(ta_data@data), rownames(ta)),]) str(ta_data@data) ##### Set seeds ### hre_seed<- 123456 set.seed(hre_seed) #### Set data for training and testing ### inTraining<- createDataPartition(ta_data@data$Name, p = .60, list = FALSE) training<- ta_data@data[ inTraining,] testing <- ta_data@data[-inTraining,] summary(training) summary(testing) #### Fit the model ### fitControl<- trainControl(## 2-fold CV method = "repeatedcv", number = 4, ## number of folds or number of resampling iterations ## repeated three times repeats = 4) ### (1) classification with Weighted K-Nearest Neighbor Classifier (WKNNC) ### set.seed(hre_seed) knnFit<- train(Name ~ ., data = training, method = "kknn", trControl = fitControl) print(knnFit) trellis.par.set(caretTheme()) # Overall accuracy plot(knnFit) knnFit$finalModel pred_knnFit<- predict(knnFit, newdata = testing) confusionMatrix(data = pred_knnFit, testing$Name) #### (2) classification with neural networks (NN)### set.seed(hre_seed) annFit <- train(Name ~ ., data = training, method = "nnet", trControl = fitControl) print(annFit) trellis.par.set(caretTheme()) # Overall accuracy plot(annFit) trellis.par.set(caretTheme()) # Kappa accuracy plot(annFit, metric = "Kappa") annFit$finalModel pred_annFit<- predict(annFit, newdata = testing) confusionMatrix(data = pred_annFit, testing$Name) #### (3) classification with Support vector machine (SVM) #### set.seed(hre_seed) svm_model<-train(Name~.,data=training, method = "svmRadial", trControl = fitControl, preProc = c("center", "scale"), tuneLength = 3) print(svm_model) trellis.par.set(caretTheme()) # Overall accuracy plot(svm_model) trellis.par.set(caretTheme()) # kappa accuracy plot(svm_model, metric = "Kappa") svm_model$finalModel svm_varImp <- varImp(svm_model, compete = FALSE) plot(svm_varImp) pred_svm<- predict(svm_model, newdata = testing) # Confusion matrix (incl. confidence interval) on test data confusionMatrix(data = pred_svm, testing$Name) ##### (4) classification with Random forest (RF) ### set.seed(hre_seed) rf_model<-train(Name~.,data=training, method="rf", trControl=fitControl, prox=TRUE, fitBest = FALSE, returnData = TRUE) print(rf_model) trellis.par.set(caretTheme()) # Overall accuracy plot(rf_model) trellis.par.set(caretTheme()) # kappa accuracy plot(rf_model, metric = "Kappa") rf_model$finalModel rf_varImp <- varImp(rf_model, compete = FALSE) plot(rf_varImp) pred_rf<- predict(rf_model$finalModel,newdata = testing) confusionMatrix(data = pred_rf, testing$Name) ### Run the model ### resamps <- resamples(list(KNN = knnFit, NN = annFit, SVM = svm_model, RF = rf_model)) resamps bwplot(resamps, layout = c(3, 1)) ### set Map #### resamps <- resamples(list(kknn = knnFit, nnet = annFit, kernlab = svm_model, e1071 = rf_model)) resamps #bwplot(resamps, layout = c(3, 1)) timeStart<- proc.time() # measure computation time LC_knnFit_84 <-predict(rasVars,knnFit) LC_ann_84 <-predict(rasVars,annFit) LC_svm_84 <-predict(rasVars,svm_model) LC_rf_84 <-predict(rasVars,rf_model) proc.time() - timeStart # user time and system time. ### Save the map as tif for Arc GIS ### predict(rasVars, rf_model,filename="result\\RF.tif", type="raw", index=1, na.rm=TRUE, progress="window", overwrite=TRUE) predict(rasVars, svm_model,filename="result\\SVM.tif", type="raw", index=1, na.rm=TRUE, progress="window", overwrite=TRUE) predict(rasVars, knnFit,filename="result\\KNN.tif", type="raw", index=1, na.rm=TRUE, progress="window", overwrite=TRUE) #Weighted K-Nearest Neighbor Classifier predict(rasVars, annFit,filename="result\\NN.tif", type="raw", index=1, na.rm=TRUE, progress="window", overwrite=TRUE)
References
- Li, J.; Wang, X.; Wang, X.; Ma, W.; Zhang, H. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complex. 2009, 6, 413–420. [Google Scholar] [CrossRef]
- National Geographic. Available online: https://www.nationalgeographic.com/environment/habitats/urban-threats/ (accessed on 9 April 2019).
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Alphan, H. Land-use change and urbanization of Adana, Turkey. Land Degrad. Dev. 2003, 14, 575–586. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. City profile: Baguio. Cities 2013, 30, 240–251. [Google Scholar] [CrossRef]
- Crossette, B. The Great Hill Stations of Asia; Basic Books: New York, NY, USA, 1999; Volume 73. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Spatio-temporal urban land use/cover change analysis in a hill station: The case of Baguio city, Philippines. Procedia - Soc. Behav. Sci. 2011, 21, 326–335. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: Remote sensing and spatial metrics approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef]
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS Int. J. Geo-Inform. 2018, 7, 341. [Google Scholar] [CrossRef]
- Weerasinghe, W.W.K. Transformation of the landscape of Nuwara-Eliya. Ph.D. Thesis, University of Moratuwa, Colombo, Sri Lanka, 2003. [Google Scholar]
- Jayasinghe, M.K.D.; Gnanapala, W.K.A.; Sandaruwani, J.A.R. Factors affecting tourists’ perception and satisfaction in Nuwara Eliya, Sri Lanka. Ilorin J. Econ. Policy 2015, 2, 1–15. [Google Scholar]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy 2015, 48, 213–222. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Foresman, T.W.; Pickett, S.T.A.; Zipperer, W.C. Methods for spatial and temporal land use and land cover assessment for urban ecosystems and application in the greater Baltimore-Chesapeake region. Urban Ecosyst. 1997, 1, 201–216. [Google Scholar] [CrossRef]
- Long, H.; Wu, X.; Wang, W.; Dong, G. Analysis of urban–rural land-use change during 1995-2006 and its policy dimensional driving forces in Chongqing, China. Sensors 2008, 8, 681–699. [Google Scholar] [CrossRef]
- Haase, D.; Nuissl, H. The urban-to-rural gradient of land use change and impervious cover: A long-term trajectory for the city of Leipzig. J. Land Use Sci. 2010, 5, 123–141. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Yang, X. Parameterizing support vector machines for land cover classification. Photogramm. Eng. Remote Sens. 2011, 77, 27–37. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X. Support vector machines for land cover mapping from remote sensor imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Springer: Dordrecht, The Netherlands, 2015; pp. 265–279. [Google Scholar]
- Kamusoko, C.; Gamba, J. Simulating urban growth using a random forest-cellular automata (RF-CA) Model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Yao, Z. Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. Int. J. Remote Sens. 2007, 28, 3255–3271. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 2016, 9, 249. [Google Scholar] [CrossRef]
- Iizuka, K.; Johnson, B.A.; Onishi, A.; Magcale-Macandog, D.B.; Endo, I.; Bragais, M. Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines. Land 2017, 6, 26. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Yeh, A.G.-O.; Li, X. Simulation of Development Alternatives Using Neural Networks, Cellular Automata, and GIS for Urban Planning. Photogramm. Eng. Remote Sens. 2013, 69, 1043–1052. [Google Scholar] [CrossRef]
- Subasinghe, S.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo-Inf. 2016, 5, 197. [Google Scholar] [CrossRef]
- Department of Census & Statistics. Census of Population and Housing 2012. 2012. Available online: http://www.statistics.gov.lk/PopHouSat/CPH2011/Pages/Activities/Reports/FinalReport/FinalReportE.pdf (accessed on 25 February 2019).
- City Population. Available online: http://www.citypopulation.info/php/srilanka-prov-admin.php?adm2id=23 (accessed on 8 June 2019).
- United States Geological Survey, Earthexplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 February 2019).
- Team, R.D.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 7 July 2019).
- Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 2013, 5, 2838–2856. [Google Scholar] [CrossRef]
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, Á.; Heredia, I.; Malík, P.; Hluchý, L. Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M. Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe. Int. J. Remote Sens. 2008, 30, 97–115. [Google Scholar] [CrossRef]
- Erkan, U.; Gökrem, L. A new method based on pixel density in salt and pepper noise removal. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 162–171. [Google Scholar] [CrossRef]
- Thapa, R.; Murayama, Y. Image classification techniques in mapping urban landscape: A case study of Tsukuba city using AVNIR-2 sensor data. Tsukuba Geoenviron. Sci. 2007, 3, 3–10. [Google Scholar]
- Sakthidasan, K.; Nagappan, N.V. Noise free image restoration using hybrid filter with adaptive genetic algorithm. Comput. Electr. Eng. 2016, 54, 382–392. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of metropolitan city Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in sub-saharan region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI Andes Tutorial. Clark Univ. 2006, 284. Available online: https://gis.fns.uniba.sk/vyuka/DTM_ako_sucast_GIS/Kriging/1/Andes_Tutorial.pdf (accessed on 8 June 2019).
- Hamdy, O.; Zhao, S.; Salheen, M.A.; Eid, Y.Y. Analyses the driving forces for urban growth by using IDRISI® Selva Models Abouelreesh Aswan as a Case Study. Int. J. Eng. Technol. 2017, 9, 226. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, H.B.; Vinay, S.; Joshi, N.V.; Kumar, U.; Rao, K.V. Modelling urban revolution in Greater Bangalore, India. In Proceedings of the 30th Annual in-House Symposium on Space Science and Technology, Bangalore, India, 7–8 November 2013; pp. 7–8. [Google Scholar]
- Wang, R.; Derdouri, A.; Murayama, Y. Spatiotemporal simulation of future land use/cover change scenarios in the Tokyo metropolitan area. Sustainability 2018, 10, 2056. [Google Scholar] [CrossRef]
- Arai, T.; Akiyama, T. Empirical analysis for estimating land use transition potential functions—Case in the Tokyo metropolitan region. Comput. Environ. Urban Syst. 2004, 28, 65–84. [Google Scholar] [CrossRef]
- Rizk, I.; Rashed, M. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [Green Version]
- Nong, Y.; Du, Q. Urban growth pattern modeling using logistic regression. Geo-Spat. Inf. Sci. 2011, 14, 62–67. [Google Scholar] [CrossRef]
- Chen, C.; Son, N.; Chang, N.; Chen, C.; Chang, L.; Valdez, M.; Centeno, G.; Thompson, C.A.; Aceituno, J.L. Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat imagery and a Markov Chain Model. Remote Sens. 2013, 5, 6408–6426. [Google Scholar] [CrossRef]
- Weiguo, J.; Zheng, C.; Xuan, L.E.I.; Kai, J.I.A.; Yongfeng, W.U. Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model. J. Geogr. Sci. 2015, 25, 836–850. [Google Scholar] [Green Version]
- Brown, D.G.; Pijanowski, B.C.; Duh, J.D. Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. J. Environ. Manag. 2000, 59, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; Ahmed, R.; Zhu, X. Evaluation of model validation techniques in land cover dynamics. ISPRS Int. J. Geo-Inf. 2013, 2, 577–597. [Google Scholar] [CrossRef]
- Van Vliet, J.; Bregt, A.K.; Hagen-zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Flo, J.; Landmark, B.; Hatlevik, O.E.; Fagerström, L. Using a new interrater reliability method to test the modified oulu patient classification instrument in home health care. Nurs. Open 2018, 5, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Whittaker, R.H. Gradient analysis of vegetation. Biol. Rev. Camb. Philos. Soc. 1967, 42, 207–264. [Google Scholar] [CrossRef] [PubMed]
- Gunaalan, K.; Ranagalage, M.; Gunarathna, M.H.J.P.; Kumari, M.K.N.; Vithanage, M.; Srivaratharasan, T.; Saravanan, S.; Warnasuriya, T.W.S. Application of geospatial techniques for groundwater quality and availability assessment: A case study in Jaffna Peninsula, Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 20. [Google Scholar] [CrossRef]
- Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban–rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data (Vol. 964); US Government Printing Office: Washington, DC, USA, 1976.
- Amarawickrama, S.; Singhapathirana, P.; Rajapaksha, N. Defining urban sprawl in the Sri Lankan context: With special reference to the Colombo Metropolitan Region. J. Asian Afr. Stud. 2015, 50, 590–614. [Google Scholar] [CrossRef]
- Ministry of Tourism Development and Christian Religious Affairs. Sri Lanka Tourism Strategic Plan 2017–2020. 2017. Available online: http://www.sltda.lk/sites/default/files/tourism-strategic-plan-2017-to-2020.pdf (accessed on 25 February 2019).
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef]
- Asian Development Bank. Upper Watershed Management Project: Completion Report; Asian Development Bank: Colombo, Sri Lanka, 2006. [Google Scholar]
- De Zoysa, M. A review of forest policy trends in Sri Lanka. Policy Trend Rep. 2001, 2001, 57–68. [Google Scholar]
- Wang, R.; Murayama, Y. Change of land use/cover in Tianjin City based on the Markov and Cellular Automata Models. ISPRS Int. J. Geo-Inf. 2017, 6, 150. [Google Scholar] [CrossRef]
- Sloan, S.; Pelletier, J. How accurately may we project tropical forest-cover change? A validation of a forward-looking baseline for REDD. Glob. Environ. Chang. 2012, 22, 440–453. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Christopher, S.A. Exploring land use and land cover effects on air quality in Central Alabama using GIS and remote sensing. Remote Sens. 2011, 3, 2552–2567. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Handayani, H.H. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo Metropolitan Area, Sri Lanka, based on Landsat data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef]
- Handayani, H.H.; Murayama, Y.; Ranagalage, M.; Liu, F.; Dissanayake, D. Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: A case study of Surabaya, Indonesia. Remote Sens. 2018, 10, 1599. [Google Scholar] [CrossRef]
- Hewawasam, T.; von Blanckenburg, F.; Schaller, M.; Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 2003, 31, 597–600. [Google Scholar] [CrossRef]
- Nayakekorala, H.B. Human induced soil degradation status in Sri Lanka. J. Soil Sci. Soc. Sri Lanka 1998, 10, 1–35. [Google Scholar]
- Bandara, D.G.V.L.; Thiruchelvam, S. Factors affecting the choice of soil conservation practices adopted by potato farmers in Nuwara Eliya district, Sri Lanka. Trop. Agric. Res. Extention 2008, 11, 49–54. [Google Scholar] [CrossRef]
- Dharmasena, P.B. Current status of land degradation in Nuwara Eliya District. 2014. Available online: https://www.academia.edu/17509210/Current_Status_of_Land_Degradation_in_Nuwara_Eliya_District (accessed on 25 March 2019).
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2018, 1, 291–306. [Google Scholar] [CrossRef]
- Sarathchandra, K.D.M.S.S.; Dayawansa, N.D.K.; Mowjood, M.I.M. Situation analysis of socio environmental aspects of non point source water pollution in intensively cultivated areas of Nuwara Eliya. Trop. Agric. Res. 2017, 28, 425–434. [Google Scholar] [CrossRef]
- Wijesundara, N.C.; Abeysingha, N.S.; Dissanayake, D.M.S.L.B. GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Model. Earth Syst. Environ. 2018, 4, 251–262. [Google Scholar] [CrossRef]
- Ranagalage, M. Landslide hazards assessment in Nuwara Eliya District in Sri Lanka. In Proceedings of the Japanese Geographical Meeting, Tsukuba, Japan, 28–30 March 2017; p. 100336. [Google Scholar]
- Perera, E.N.C.; Jayawardana, D.T.; Ranagalage, M.; Jayasinghe, P. Spatial multi criteria evaluation (SMCE) model for landslide hazard zonation in tropical hilly environment: A case study from Kegalle. Geoinform. Geostat. Overv. 2018, S3. [Google Scholar] [CrossRef]
- Perera, E.N.C.; Jayawardana, D.T.; Jayasinghe, P.; Ranagalage, M. Landslide vulnerability assessment based on entropy method: A case study from Kegalle district, Sri Lanka. Model. Earth Syst. Environ. 2019, 1–15. [Google Scholar] [CrossRef]
- De Costa, W. Climate change in Sri Lanka: Myth or reality? Evidence from long-term meteorological data. J. Natl. Sci. Found. Sri Lanka 2008, 36, 63. [Google Scholar] [CrossRef]
- De Silva, J.; Sonnadara, D.U.J. Century scale climate change in the central highlands of Sri Lanka. J. Earth Syst. Sci. 2016, 125, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Henegama, H.P.; Dayawansa, N.D.K.; De Silva, S. An assessment of social and environmental implications of agricultural water pollution in Nuwara Eliya. Trop. Agric. Res. 2013, 24, 304–316. [Google Scholar] [CrossRef]
- Ariyapala, W.S.B.; Nissanka, S.P. Reasons for and impacts of excessive fertilizer usage for potato farming in the Nuwara Eliya District. Trop. Agric. Res. 2006, 18, 63–70. [Google Scholar]
- Sirisena, D.; Suriyagoda, L.D.B. Toward sustainable phosphorus management in Sri Lankan rice and vegetable-based cropping systems: A review. Agric. Nat. Resour. 2018, 52, 9–15. [Google Scholar] [CrossRef]
- Department of Land Use Policy and Planning. National Land Use Policy of Sri Lanka Department of Land Use Policy Planning; Department of Land Use Policy and Planning: Colombo, Sri Lanka, 2018.
- Herath, J. Distributional Impacts of Land Policies in Sri Lanka; Sri Lankan Agricultural Economics Association (SAEA) Movement for National Land and Agricultural Reform (MONLAR): Sri Jayawardenapura Kotte, Sri Lanka, 2014. [Google Scholar]
- Marambe, B.; Silva, P.; Athauda, S. Agriculture and rural development under central government and provincial council setup in Sri Lanka. In Decentralization and Development of Sri Lanka within a Unitary State; Cooray, N.S., Abeyratne, S., Eds.; Springer Nature Singapore Pte. Ltd.: Singapore, 2017. [Google Scholar]
- Gunarathna, M.H.J.P.; Kumari, M.K.N.; Nirmanee, K.G.S.; Jayasinghe, G.Y. Spatial and seasonal water quality variation of Yan Oya in tropical Sri Lanka. Int. J. Appl. Nat. Sci. 2016, 5, 45–56. [Google Scholar]
- United Nations. Transforming OurWorld: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
Data Type | Format | Scale/Resolution | Data Source | Year | Projection |
---|---|---|---|---|---|
DEM | Raster | 30 m | United States Geological Survey (USGS) | 2017 | WGS84/UTM 44N |
Slope | Raster | 30 m | Extracted from DEM | 2017 | WGS84/UTM 44N |
Road network | Vector | 1:50,000 | Survey Department, Sri Lanka | 2017 | WGS84/UTM 44N |
Forest protection area | Vector | 1:50,000 | Forest Department, Sri Lanka | 2010 | WGS84/UTM 44N |
Land Use/Cover | Description |
---|---|
Built-up | All impervious surfaces including urban, residential, industrial and institutional areas, transport utilities and all other impervious areas. |
Forest | Areas including high and low-density evergreen forest over the year. |
Agricultural land | Commercial and non-commercial agricultural areas (including tea and up-county vegetables). |
Water | Areas covered by water bodies such as dams, lakes, rivers, reservoirs, and streams. |
Other land | Bare land, grassland, and all LULC classes not accounted by the above four classes. |
Representative Factor | Description |
---|---|
DEM (meter) | Provide suitable areas for future development. For example, the lowland area is more inclined to be developed. |
Slope (degree) | Provide suitable areas for future development. For example, some area which slopes down sharply should be developed into the grass, forest. |
Distance from the main road (meter) | The road as the main transportation utility in the study area and it drives urbanization. |
Distance from city center (meter) | According to the LULC maps from 1996 to 2017, the built-up area expanded from city center to the surrounding area. The city center manually demarcated as 6.973,902,78 N and 6.973,902,78 E. |
Distance from footpath and jeep and cart roads (meter) | To provide for the future development of the road. The possible road development can be from converting jeep and cart roads into the main road and footpath into jeep and cart roads. |
Distance from persistent built-up (meter) | The new built-up area always has been established around persistent built-up. |
Protected area | Area limiting the development or difficult to change in a short time. During the past 21 years, the forest protection areas have not been changed due to the government policies on forest protection. |
Accuracy | LULC Category | 1996 | 2006 | 2017 |
---|---|---|---|---|
User’s accuracy (%) | Built-up | 80.9 | 93.3 | 94.0 |
Forest | 90.2 | 94.3 | 92.5 | |
Agricultural land | 84.3 | 93.4 | 94.4 | |
Other land | 81.0 | 71.4 | 80.5 | |
Water | 80.0 | 89.7 | 92.3 | |
Producer’s accuracy (%) | Built-up | 80.9 | 93.3 | 94.0 |
Forest | 85.1 | 95.8 | 94.7 | |
Agricultural land | 87.0 | 91.2 | 91.2 | |
Other land | 81.0 | 71.4 | 89.2 | |
Water | 72.7 | 92.9 | 92.3 | |
Overall accuracy (%) | 85.0 | 93.0 | 92.0 | |
Kappa Coefficient | 0.80 | 0.90 | 0.90 |
Land Use/Cover | 1996 | 2006 | 2017 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Built-up | 289.9 | 1.3 | 785.5 | 3.5 | 2080.4 | 9.3 |
Forest | 13,076.7 | 58.2 | 13,502.1 | 60.1 | 13,234.3 | 58.9 |
Agricultural land | 8503.2 | 37.9 | 8085.5 | 36.0 | 6583.9 | 29.3 |
Other land | 511.8 | 2.3 | 6.0 | 0.0 | 481.8 | 2.1 |
Water | 73.4 | 0.3 | 75.9 | 0.3 | 74.6 | 0.3 |
Total | 22,455.0 | 100.0 | 22,455.0 | 100.0 | 22,455.0 | 100.0 |
2006 | ||||||
---|---|---|---|---|---|---|
1996 | Built-up | Forest | Agricultural Land | Other Land | Water | Grand Total |
Built-up | 277.7 | 2.1 | 9.9 | 0.3 | 0.0 | 289.9 |
Forest | 12.1 | 12,347.9 | 707.6 | 0.5 | 8.6 | 13,076.7 |
Agricultural land | 434.5 | 1088.5 | 6972.6 | 4.0 | 3.7 | 8503.2 |
Other Land | 59.7 | 55.1 | 390.9 | 0.8 | 5.4 | 511.8 |
Water | 1.6 | 8.6 | 4.6 | 0.5 | 58.1 | 73.4 |
Grand total | 785.5 | 13,502.1 | 8085.5 | 6.0 | 75.9 | |
Net change | 495.6 | 425.3 | −417.7 | −505.8 | 2.5 | |
Annual change | 49.6 | 42.5 | −41.8 | −50.6 | 0.3 | |
Annual change rate (%) | 10.5 | 0.3 | −0.5 | −35.9 | 0.3 |
2017 | ||||||
---|---|---|---|---|---|---|
2006 | Built-up | Forest | Agricultural Land | Other Land | Water | Grand Total |
Built-up | 762.2 | 5.3 | 6.7 | 9.8 | 1.5 | 785.5 |
Forest | 146.7 | 12,529.4 | 727.8 | 90.3 | 7.8 | 13,502.1 |
Agricultural land | 1166.9 | 694.9 | 5848.6 | 368.7 | 6.5 | 8085.5 |
Other land | 0.4 | 0.2 | 0.3 | 4.7 | 0.5 | 6.0 |
Water | 4.3 | 4.5 | 0.5 | 8.3 | 58.2 | 75.9 |
Grand total | 2080.4 | 13,234.3 | 6583.9 | 481.8 | 74.6 | |
Net change | 1294.9 | −267.8 | −1501.7 | 475.7 | −1.3 | |
Annual change | 117.7 | −24.3 | −136.5 | 43.2 | −0.1 | |
Annual change rate (%) | 9.3 | −0.2 | −1.9 | 48.9 | −0.2 |
2017 | ||||||
---|---|---|---|---|---|---|
1996 | Built-up | Forest | Agricultural Land | Other Land | Water | Grand Total |
Built-up | 284.9 | 0.2 | 3.2 | 1.7 | 0.0 | 289.9 |
Forest | 103.8 | 12,478.7 | 440.9 | 48.9 | 4.5 | 13,076.7 |
Agricultural land | 1531.1 | 711.8 | 5872.8 | 386.1 | 1.4 | 8503.2 |
Other land | 159.7 | 40.5 | 266.7 | 45.0 | 0.0 | 511.8 |
Water | 1.1 | 3.2 | 0.4 | 0.1 | 68.7 | 73.4 |
Grand total | 2080.4 | 13,234.3 | 6583.9 | 481.8 | 74.6 | |
Net change | 1790.6 | 157.6 | −1919.3 | −30.1 | 1.3 | |
Annual change | 85.3 | 7.5 | −91.4 | −1.4 | 0.1 | |
Annual change rate (%) | 9.8 | 0.1 | −1.2 | −0.3 | 0.1 |
Land Use/Cover | 2027 Area (ha) | % | 2037 Area (ha) | % |
---|---|---|---|---|
Built-up | 3012.7 | 13.4 | 3973.1 | 17.7 |
Forest | 13,785.8 | 61.4 | 13,298.9 | 59.2 |
Agricultural land | 4768.8 | 21.2 | 3954.7 | 17.6 |
Other land | 813.1 | 3.6 | 1153.7 | 5.1 |
Water | 74.6 | 0.3 | 74.6 | 0.3 |
Total | 22,455.0 | 100.0 | 22,455.0 | 100.0 |
2027 | ||||||
---|---|---|---|---|---|---|
2017 | Built-up | Forest | Agricultural Land | Other Land | Water | Grand Total |
Built-up | 2054.4 | 0.0 | 0.0 | 26.0 | 0.0 | 2080.4 |
Forest | 8.6 | 13,220.6 | 0.0 | 5.2 | 0.0 | 13,234.3 |
Agricultural land | 949.7 | 565.3 | 4768.8 | 300.1 | 0.0 | 6583.9 |
Other land | 0.0 | 0.0 | 0.0 | 481.8 | 0.0 | 481.8 |
Water | 0.0 | 0.0 | 0.0 | 0.0 | 74.6 | 74.6 |
Grand total | 3012.7 | 13,785.8 | 4768.8 | 813.1 | 74.6 | 22,455.0 |
Net change | 932.2 | 551.5 | −1815.0 | 331.3 | 0.0 | |
Annual change | 93.2 | 55.2 | −181.5 | 33.1 | 0.0 | |
Annual change rate (%) | 3.8 | 0.4 | −3.2 | 5.4 | 0.0 |
2037 | ||||||
---|---|---|---|---|---|---|
2017 | Built-up | Forest | Agricultural Land | Other Land | Water | Grand Total |
Built-up | 2030.6 | 0.0 | 0.0 | 49.9 | 0.0 | 2080.4 |
Forest | 170.3 | 12,986.9 | 0.0 | 77.1 | 0.0 | 13,234.3 |
Agricultural land | 1772.3 | 311.9 | 3954.7 | 545.0 | 0.0 | 6583.9 |
Other land | 0.0 | 0.0 | 0.0 | 481.8 | 0.0 | 481.8 |
Water | 0.0 | 0.0 | 0.0 | 0.0 | 74.6 | 74.6 |
Grand total | 3973.1 | 13,298.9 | 3954.7 | 1153.7 | 74.6 | 22,455.0 |
Net change | 1892.7 | 64.5 | −2629.2 | 671.9 | 0.0 | |
Annual change | 94.6 | 3.2 | −131.5 | 33.6 | 0.0 | |
Annual change rate (%) | 3.3 | 0 | −2.5 | 4.5 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial Forecasting of the Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sens. 2019, 11, 1743. https://doi.org/10.3390/rs11151743
Ranagalage M, Wang R, Gunarathna MHJP, Dissanayake D, Murayama Y, Simwanda M. Spatial Forecasting of the Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sensing. 2019; 11(15):1743. https://doi.org/10.3390/rs11151743
Chicago/Turabian StyleRanagalage, Manjula, Ruci Wang, M. H. J. P. Gunarathna, DMSLB Dissanayake, Yuji Murayama, and Matamyo Simwanda. 2019. "Spatial Forecasting of the Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study of Nuwara Eliya, Sri Lanka (1996–2037)" Remote Sensing 11, no. 15: 1743. https://doi.org/10.3390/rs11151743
APA StyleRanagalage, M., Wang, R., Gunarathna, M. H. J. P., Dissanayake, D., Murayama, Y., & Simwanda, M. (2019). Spatial Forecasting of the Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sensing, 11(15), 1743. https://doi.org/10.3390/rs11151743