Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Environmental Characteristics on Central Yamal
2.2. In Situ Measurements from Long-Term Monitoring
2.2.1. Meteorological Station and Borehole Data
2.2.2. Active-Layer Thickness
2.3. Satellite Data
2.3.1. Sentinel-1 C-Band SAR Satellite Data
2.3.2. COSMO-Skymed X-Band SAR Satellite Data
2.3.3. Land Cover from Sentinel-1 and Sentinel-2
2.3.4. Soil Surface Wetness from Scatterometer Data
3. Methodology
3.1. Displacement Retrieval by InSAR
3.2. In Situ Measurements of Subsidence
3.3. Post-Processing
4. Results
4.1. In Situ Observations in Comparison to C-Band Retrievals at the CALM Grid
4.2. Displacement: C-Band Versus X-Band
4.3. Land Cover and Displacements
4.4. Active-Layer Thickness Dynamics
5. Discussion
5.1. Impact of 2016 Warm Conditions
5.2. Variation of Soil Properties Between Years
5.3. Comparison between X-Band and C-Band
5.4. General Displacement Patterns and Measurement Errors with Respect to Previous Findings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Lanckman, J.P.; Lantuit, H.; Elger, K.; Streletskiy, D.A.; Cable, W.L.; Romanovsky, V.E. The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth Syst. Sci. Data 2015, 7, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Trofaier, A.M.; Westermann, S.; Bartsch, A. Progress in space-borne studies of permafrost for climate science: Towards a multi-ECV approach. Remote Sens. Environ. 2017, 203, 55–70. [Google Scholar] [CrossRef]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Zhang, T.; Wahr, J. Estimating 1992–2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Rouyet, L.; Lauknes, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sens. Environ. 2019, 231, 111236. [Google Scholar] [CrossRef]
- Schaefer, K.; Liu, L.; Parsekian, A.; Jafarov, E.; Chen, A.; Zhang, T.; Gusmeroli, A.; Panda, S.; Zebker, H.A.; Schaefer, T. Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar. Remote Sens. 2015, 7, 3735–3759. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Z.; Zhang, H.; Zhang, B.; Tang, Y.; Wu, Q. Active Layer Thickness Retrieval of Qinghai-Tibet Permafrost Using the TerraSAR-X InSAR Technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4403–4413. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Chen, J.; Günther, F.; Grosse, G.; Liu, L.; Lin, H. Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta. Remote Sens. 2018, 10, 1152. [Google Scholar] [CrossRef]
- Zwieback, S.; Liu, X.; Antonova, S.; Heim, B.; Bartsch, A.; Boike, J.; Hajnsek, I. A Statistical Test of Phase Closure to Detect Influences on DInSAR Deformation Estimates Besides Displacements and Decorrelation Noise: Two Case Studies in High-Latitude Regions. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5588–5601. [Google Scholar] [CrossRef]
- Antonova, S.; Sudhaus, H.; Strozzi, T.; Zwieback, S.; Kääb, A.; Heim, B.; Langer, M.; Bornemann, N.; Boike, J. Thaw Subsidence of a Yedoma Landscape in Northern Siberia, Measured In Situ and Estimated from TerraSAR-X Interferometry. Remote Sens. 2018, 10, 494. [Google Scholar] [CrossRef]
- Michaelides, R.J.; Schaefer, K.; Zebker, H.A.; Parsekian, A.; Liu, L.; Chen, J.; Natali, S.; Ludwig, S.; Schaefer, S.R. Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm. Environ. Res. Lett. 2019, 14, 035007. [Google Scholar] [CrossRef]
- Strozzi, T.; Antonova, S.; Günther, F.; Mätzler, E.; Vieira, G.; Wegmüller, U.; Westermann, S.; Bartsch, A. Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas. Remote Sens. 2018, 10, 1360. [Google Scholar] [CrossRef]
- Daout, S.; Doin, M.P.; Peltzer, G.; Socquet, A.; Lasserre, C. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 901–909. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Matzler, C. Mapping wet snowcovers with SAR interferometry. Int. J. Remote Sens. 1999, 20, 2395–2403. [Google Scholar] [CrossRef]
- Rudy, A.C.; Lamoureux, S.F.; Treitz, P.; Short, N.; Brisco, B. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Wright, N.; Hayashi, M.; Quinton, W.L. Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J. High temporal resolution permafrost monitoring using a multiple stack InSAR technique. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, XL-7W3, 1171–1176. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Jacome, A.; Poulin, J.; Ludwig, R. Comparison of TerraSAR-X and ALOS PALSAR Differential Interferometry With Multisource DEMs for Monitoring Ground Displacement in a Discontinuous Permafrost Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4074–4093. [Google Scholar] [CrossRef]
- Leibman, M.; Khomutov, A.; Gubarkov, A.; Mullanurov, D.; Dvornikov, Y. The research station “Vaskiny Dachi” Central Yamal, West Siberia, Russia—A review of 25 years of permafrost studies. Fennia 2015, 193, 3–30. [Google Scholar] [CrossRef]
- Babkina, E.A.; Leibman, M.O.; Dvornikov, Y.A.; Fakashchuk, N.Y.; Khairullin, R.R.; Khomutov, A.V. Activation of Cryogenic Processes in Central Yamal as a Result of Regional and Local Change in Climate and Thermal State of Permafrost. Russ. Meteorol. Hydrol. 2019, 44, 283–290. [Google Scholar] [CrossRef]
- Khitun, O.; Ermokhina, K.; Czernyadjeva, I.; Leibman, M.; Khomutov, A. Floristic complexes on landslides of different age in Central Yamal, West Siberian Low Arctic, Russia. Fenn. Int. J. Geogr. 2015, 193, 31–52. [Google Scholar] [CrossRef]
- Dvornikov, Y.; Leibman, M.; Heim, B.; Bartsch, A.; Haas, A.; Khomutov, A.; Gubarkov, A.; Mikhaylova, M.; Mullanurov, D.; Widhalm, B.; et al. Geodatabase and WebGIS project for long-term permafrost monitoring at the Vaskiny Dachi research station, Yamal, Russia. Polarforschung 2016, 85, 107–115. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 996. [Google Scholar] [CrossRef]
- Leibman, M.; Kizyakov, A.; Plekhanov, A.; Streletskaya, I. New permafrost feature: Deep crater in Central Yamal, West Siberia, Russia as a response to local climate fluctuations. Geogr. Environ. Sustain. 2014, 7, 68–80. [Google Scholar] [CrossRef]
- Khomutov, A.; Leibman, M. Assessment of Landslide Hazards in a Typical Tundra of Central Yamal, Russia. In Landslides in Cold Regions in the Context of Climate Change; Shan, W., Guo, Y., Wang, F., Marui, H., Strom, A., Eds.; Springer International Publishing: Cham, Germany, 2014; pp. 271–290. [Google Scholar] [CrossRef]
- Bartsch, A.; Widhalm, B.; Pointner, G.; Ermokhina, K.; Leibman, M.; Heim, B. Landcover Derived from Sentinel-1 and Sentinel-2 Satellite Data (2015–2018) for Subarctic and Arctic Environments; Zentralanstalt für Meteorologie und Geodynamik: Vienna, Austria, 2019. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Shiklomanov, N.I.; Little, J.D.; Nelson, F.E.; Brown, J.; Nyland, K.E.; Klene, A.E. Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962–2015. Permafr. Periglac. Process. 2016, 28, 566–572. [Google Scholar] [CrossRef]
- Melnikov, E.S.; Leibman, M.O.; Moskalenko, N.G.; Vasiliev, A.A. Active-Layer Monitoring in the Cryolithozone of West Siberia. Polar Geogr. 2004, 28, 267–285. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Leibman, M.O.; Moskalenko, N.G. Active Layer Monitoring in West Siberia under the CALM II Program. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; Kane, D.L., Hinkel, K.M., Eds.; Institute of Northern Engineering, University of Alaska Fairbanks: Fairbanks, AK, USA, 2008; Volume 2, pp. 1815–1820. [Google Scholar]
- Leibman, M.; Moskalenko, N.; Orekhov, P.; Khomutov, A.; Gameev, I.; Khitun, O.; Walker, D.; Epstein, H. Interrelation of cryogenic and biotic components of geosystems in cryolithozone of West Siberia on the Transect ‘Yamal’. In Polar Cryosphere of Water and Land; Kotlyakov, V., Ed.; Paulsen Publisher: Moscow, Russia, 2011; pp. 171–192. [Google Scholar]
- Leibman, M.; Khomutov, A.; Orekhov, P.; Khitun, O.; Epstein, H.; Frost, G.; Walker, D. Gradient of seasonal thaw depth along the Yamal transect. In Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012; translation of Russian contributions. Melnikov, V., Drozdov, D., Romanovksy, V., Eds.; Volume 10 (Volume 2), pp. 237–242. [Google Scholar]
- Walker, D.; Epstein, H.; Leibman, M.; Moskalenko, N.; Orekhov, P.; Kuss, J.; Matyshak, G.; Kaarlejärvi, E.; Forbes, B.; Barbour, E.; et al. Data Report of the 2007 and 2008 Yamal Expeditions; Alaska Geobotany Center, Institute of Arctic Biology, University of Alaska Fairbanks: Fairbanks, AK, USA, 2009; 121p. [Google Scholar]
- Brown, J.; Hinkel, K.M.; Nelson, F.E. The circumpolar active layer monitoring (CALM) program: Research designs and initial results. Polar Geogr. 2000, 24. [Google Scholar] [CrossRef]
- Widhalm, B.; Bartsch, A.; Leibman, M.; Khomutov, A. Active-layer thickness estimation from X-band SAR backscatter intensity. Cryosphere 2017, 11, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Potin, P.; Rosich, B.; Roeder, J.; Bargellini, P. Sentinel-1 Mission operations concept. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1465–1468. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Virelli, M.; Coletta, A.; Battagliere, M.L. ASI COSMO-SkyMed: Mission Overview and Data Exploitation. IEEE Geosci. Remote Sens. Mag. 2014, 2, 64–66. [Google Scholar] [CrossRef]
- Kumpula, T.; Forbes, B.C.; Stammler, F.; Meschtyb, N. Dynamics of a Coupled System: Multi-Resolution Remote Sensing in Assessing Social-Ecological Responses during 25 Years of Gas Field Development in Arctic Russia. Remote Sens. 2012, 4, 1046–1068. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Höfler, A.; Kroisleitner, C.; Trofaier, A.M. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote Sens. 2016, 8, 979. [Google Scholar] [CrossRef]
- Bartsch, A.; Widhalm, B.; Kuhry, P.; Hugelius, G.; Palmtag, J.; Siewert, M. Can C-Band SAR be used to estimate soil organic carbon storage in tundra? Biogeosciences 2016, 13, 5453–5470. [Google Scholar] [CrossRef]
- Widhalm, B.; Bartsch, A.; Heim, B. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data. Int. J. Remote Sens. 2015, 36, 5537–5556. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, B.; Bartsch, A.; Goler, R. Simplified Normalization of C-Band Synthetic Aperture Radar Data for Terrestrial Applications in High Latitude Environments. Remote Sens. 2018, 10, 551. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Högström, E.; Heim, B.; Bartsch, A.; Bergstedt, H.; Pointner, G. Evaluation of a MetOp ASCAT-Derived Surface Soil Moisture Product in Tundra Environments. J. Geophys. Res. Earth Surf. 2018, 123, 3190–3205. [Google Scholar] [CrossRef]
- Högström, E.; Trofaier, A.M.; Gouttevin, I.; Bartsch, A. Assessing Seasonal Backscatter Variations with Respect to Uncertainties in Soil Moisture Retrieval in Siberian Tundra Regions. Remote Sens. 2014, 6, 8718–8738. [Google Scholar] [CrossRef] [Green Version]
- Högström, E.; Bartsch, A. Impact of Backscatter Variations Over Water Bodies on Coarse-Scale Radar Retrieved Soil Moisture and the Potential of Correcting With Meteorological Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3–13. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Processing strategies for phase unwrapping for INSAR applications. In Proceedings of the European Conference on Synthetic Aperture Radar EUSAR 2002, Cologne, Germany, 4–6 June 2002. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Zan, F.D.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Wegmuller, U.; Strozzi, T.; Werner, C. Ionospheric path delay estimation using split-beam interferometry. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar] [CrossRef]
- Gomba, G.; Parizzi, A.; Zan, F.D.; Eineder, M.; Bamler, R. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1446–1461. [Google Scholar] [CrossRef]
- Dingman, S.; Barry, R.; Weller, G.; Benson, C.S.; LeDrew, E.; Goodwin, C. Climate, Snow Cover, Microclimate, and Hydrology. In An Arctic Ecosystem: The Coastal Tundra at Barrow; Brown, J., Miller, P., Bunnell, F., Eds.; Hutchinson and Ross: Stroudsburg, PA, USA, 1980; Chapter 2; pp. 30–65. [Google Scholar]
- Kroisleitner, C.; Bartsch, A.; Bergstedt, H. Circumpolar patterns of potential mean annual ground temperature based on surface state obtained from microwave satellite data. Cryosphere 2018, 12, 2349–2370. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A. Ten Years of SeaWinds on QuikSCAT for Snow Applications. Remote Sens. 2010, 2, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- Short, N.; LeBlanc, A.M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Little, J.D.; Sandall, H.; Walegur, M.T.; Nelson, F.E. Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments. Permafr. Periglac. Process. 2003, 14, 349–357. [Google Scholar] [CrossRef]
- Beck, I.; Ludwig, R.; Bernier, M.; Strozzi, T.; Boike, J. Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry. Earth Surf. Dyn. 2015, 3, 409–421. [Google Scholar] [CrossRef]
- Shiklomanov, N.I.; Streletskiy, D.A.; Little, J.D.; Nelson, F.E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett. 2013, 40, 6356–6361. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Riseborough, D.W. Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Østby, T.; Gisnås, K.; Schuler, T.; Etzelmüller, B. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. Cryosphere 2015, 9, 1303–1319. [Google Scholar] [CrossRef] [Green Version]
- Gubarkov, A.A.; Elantsev, E.V.; Leibman, M.O.; Mullanurov, D.R.; Khomutov, A.V.; Dvornikov, Y.A.; Widhalm, B.; Bartsch, A. Study of seasonal frost heaving in Central Yamal. In Proceedings of the Extended Meeting of the Council on Earth Cryology RAS ’Actual Problems of Geocryology’(in Russian), Moscow, Russia, 15–16 May 2018; Volume 1, pp. 159–163. [Google Scholar]
- Mackay, J.R. Downward water movement into frozen ground, western Arctic coast, Canada. Can. J. Earth Sci. 1983, 20, 120–134. [Google Scholar] [CrossRef]
- Spreckels, V.; Wegmüller, U.; Strozzi, T.; Musiedlak, J.; Wichlacz, H. Detection and observation of underground coal mining-induced surface deformation with differential SAR interferometry. In Proceedings of the Joint Workshop of ISPRS Working Groups I-2, I-5 and IV-7 High Resolution Mapping from Space, Hannover, Germany, 19–21 September 2001. [Google Scholar]
- Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B.M.; Zhang, T.; Parsekian, A.D.; Zebker, H.A. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere 2014, 8, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Koven, C.; McGuire, A.D.; Grosse, G.; Kuhry, P.; et al. Permafrost collapse is accelerating carbon release. Nature 2019, 569, 32–34. [Google Scholar] [CrossRef] [Green Version]
Date | Day of Year | Day Since Thaw | Degree-Days of Thawing |
---|---|---|---|
7 July 2016 | 189 | 51 | 279.32 |
19 July 2016 | 201 | 63 | 535.64 |
12 August 2016 | 225 | 87 | 828.40 |
24 August 2016 | 237 | 99 | 979.18 |
5 September 2016 | 249 | 111 | 1092.20 |
17 September 2016 | 261 | 123 | 1221.94 |
5 October 2016 | 279 | 141 | 1337.53 |
14 June 2017 | 166 | 13 | 17.19 |
26 June 2017 | 178 | 25 | 66.60 |
8 July 2017 | 190 | 37 | 137.37 |
20 July 2017 | 202 | 49 | 304.73 |
1 August 2017 | 214 | 61 | 467.37 |
25 August 2017 | 238 | 85 | 630.93 |
6 September 2017 | 250 | 97 | 718.42 |
18 September 2017 | 262 | 109 | 749.61 |
30 September 2017 | 274 | 121 | 782.15 |
12 October 2017 | 286 | 133 | 816.86 |
3 July 2018 | 185 | 28 | 98.30 |
15 July 2018 | 197 | 40 | 172.22 |
8 August 2018 | 221 | 64 | 304.44 |
20 August 2018 | 233 | 76 | 380.00 |
1 September 2018 | 245 | 88 | 501.11 |
7 October 2018 | 281 | 124 | 704.72 |
19 October 2018 | 293 | 155 | 717.52 |
Date | Day of Year | Degree-Days of Thawing | Date | Day of Year | Degree-Days of Thawing |
---|---|---|---|---|---|
8 June 2013 | 160 | 0 | 8 June 2016 | 160 | 14.4 |
16 June 2013 | 168 | 25.4 | 12 June 2016 | 164 | 21.6 |
17 June 2013 | 169 | 26.8 | 16 June 2016 | 168 | 66.4 |
20 June 2013 | 172 | 35.9 | 24 June 2016 | 176 | 154.8 |
2 July 2013 | 184 | 72.8 | 28 June 2016 | 180 | 183.3 |
3 July 2013 | 185 | 78.1 | 2 July 2016 | 184 | 225.5 |
6 July 2013 | 188 | 94.8 | 10 July 2016 | 192 | 380.7 |
10 July 2013 | 192 | 112.9 | 14 July 2016 | 196 | 468.1 |
18 July 2013 | 200 | 197.5 | 26 July 2016 | 208 | 679.0 |
22 July 2013 | 204 | 275.1 | 30 July 2016 | 212 | 709.6 |
26 July 2013 | 208 | 342.0 | 3 August 2016 | 216 | 754.0 |
3 August 2013 | 216 | 414.0 | 11 August 2016 | 224 | 851.8 |
4 August 2013 | 217 | 421.1 | 19 August 2016 | 232 | 960.0 |
7 August 2013 | 220 | 443.2 | 27 August 2016 | 240 | 1043.0 |
11 August 2013 | 224 | 482.1 | 31 August 2016 | 244 | 1079.3 |
19 August 2013 | 232 | 549.9 | 4 September 2016 | 248 | 1121.2 |
20 August 2013 | 233 | 556.1 | 12 September 2016 | 256 | 1210.2 |
23 August 2013 | 236 | 582.3 | 2 October 2016 | 276 | 1366.7 |
4 September 2013 | 248 | 667.1 | |||
21 September 2013 | 265 | 747.9 | |||
24 September 2013 | 268 | 748.1 | |||
28 September 2013 | 272 | 746.8 | |||
6 October 2013 | 280 | 739.8 | |||
10 October 2013 | 284 | 725.4 |
Parameter | 2013 | 2016 | 2017 | 2018 | Average |
---|---|---|---|---|---|
In situ subsidence, average | nd | −5.5 | −4.7 | −4.1 | −4.8 |
Sentinel-1 LOS average over CALM grid | nd | −5.4 * | −2.6 | −2.0 * | −3.3 |
Sentinel-1 scaled LOS average over CALM grid | nd | −5.8 * | −3.1 | −2.5 * | −3.8 |
Sentinel-1 LOS average over overlap area | nd | −5.4 * | −2.4 | −2.5 * | −3.4 |
COSMO Skymap LOS average over overlap area | −3.8 | −5.8 | nd | nd | na |
Active-layer depth in cm over CALM grid (minimum) | 103 | 119 | 108 | 95 | 103 (1999–2018) |
Total DDT (thaw index) | 759 | 1443 | 827 | 720 | 780 (1999–2018) |
Cumulative DDT with early season heave (LOS) | 95 | 183 | 0 | nd | na |
Cumulative DDT when 100 cm in borehole are reached | 119 | 408 | 241 | 191 | 242 (2008–2018) |
Precipitation sum [mm] Autumn of preceding year | 28 | 33 | 19.3 | 19.3 | 26.4 (2012–2018) |
Backscatter [dB] from Autumn of preceding year | −11.4 | −11.8 | −12.5 | −12.5 | −11.9 (2012–2018) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartsch, A.; Leibman, M.; Strozzi, T.; Khomutov, A.; Widhalm, B.; Babkina, E.; Mullanurov, D.; Ermokhina, K.; Kroisleitner, C.; Bergstedt, H. Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016. Remote Sens. 2019, 11, 1865. https://doi.org/10.3390/rs11161865
Bartsch A, Leibman M, Strozzi T, Khomutov A, Widhalm B, Babkina E, Mullanurov D, Ermokhina K, Kroisleitner C, Bergstedt H. Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016. Remote Sensing. 2019; 11(16):1865. https://doi.org/10.3390/rs11161865
Chicago/Turabian StyleBartsch, Annett, Marina Leibman, Tazio Strozzi, Artem Khomutov, Barbara Widhalm, Elena Babkina, Damir Mullanurov, Ksenia Ermokhina, Christine Kroisleitner, and Helena Bergstedt. 2019. "Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016" Remote Sensing 11, no. 16: 1865. https://doi.org/10.3390/rs11161865
APA StyleBartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E., Mullanurov, D., Ermokhina, K., Kroisleitner, C., & Bergstedt, H. (2019). Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016. Remote Sensing, 11(16), 1865. https://doi.org/10.3390/rs11161865