Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. In Situ Data for SMAR Calibration and Validation
2.3. Catchment Stratification and Regional Soil Property Maps for SMAR Spatial Operation
2.4. Satellite Remote Sensing Data
2.5. SMAR Model Formulation and Spatial Operation
2.6. SMAR Model Calibration and Validation
3. Results
3.1. The Shale Hills Catchment
3.2. The Eastern United States Region
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Band, E.L.; Patterson, P.; Nemani, R.; Running, S.W. Forest ecosystem processes at the watershed scale: Incorporating hillslope hydrology. Agric. For. Meteorol. 1993, 63, 93–126. [Google Scholar] [CrossRef]
- Pauwels, V.R.; Hoeben, R.; Verhoest, N.E.; De Troch, F.P. The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. J. Hydrol. 2001, 251, 88–102. [Google Scholar] [CrossRef]
- Yu, X.; Duffy, C.; Baldwin, D.C.; Lin, H. The role of macropores and multi-resolution soil survey datasets for distributed surface–subsurface flow modeling. J. Hydrol. 2014, 516, 97–106. [Google Scholar] [CrossRef]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and their Impacts on the Natural Physical Environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambrige, UK, 2012; pp. 109–230. [Google Scholar]
- Flores, A.N.; Entekhabi, D.; Bras, R.L. Application of a hillslope-scale soil moisture data assimilation system to military trafficability assessment. J. Terramechanics 2014, 51, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Bindlish, R.; Crow, W.T.; Jackson, T.J. Potential Role of Passive Microwave Remote Sensing in Improving Flood Forecasts. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1866–1869. [Google Scholar]
- Bartsch, A.; Balzter, H.; George, C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ. Res. Lett. 2009, 4, 045021. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Forman, B.A.; Draper, C.S.; Liu, Q. Connecting satellite observations with water cycle variables through land data assimilation: Examples using the NASA GEOS-5 LDAS. Surv. Geophys. 2014, 35, 577–606. [Google Scholar] [CrossRef]
- Schaefer, G.L.; Cosh, M.; Jackson, T.J. The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Ocean. Technol. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
- Dorigo, W.; Jackson, T.; Dursch, M.; van Oevelen, P.; Robock, A.; Wagner, W. The International Soil Moisture Network. In Proceedings of the SMAP Cal/Val Workshop, Oxnard, CA, USA, 3 May 2011. [Google Scholar]
- Crow, W.T.; Kumar, S.V.; Bolten, J.D. On the utility of land surface models for agricultural drought monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 3451–3460. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.; Jackson, T.; Lakshmi, V.; Chan, T.; Nghiem, S. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Reichle, R.H.; Entekhabi, D.; McLaughlin, D.B. Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res. 2001, 37, 2353–2364. [Google Scholar] [CrossRef] [Green Version]
- Scipal, K.; Scheffler, C.; Wagner, W. Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing. Hydrol. Earth Syst. Sci. 2005, 9, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Iturbe, I.; Isham, V.; Cox, D.R.; Manfreda, S.; Porporato, A.; Rodriguez-Iturbe, I.; Rodriguez-Iturbe, I. Space-time modeling of soil moisture: Stochastic rainfall forcing with heterogeneous vegetation. Water Resour. Res. 2006, 42, W06D05. [Google Scholar] [CrossRef]
- Denmead, O.T.; Shaw, R.H. Availability of Soil Water to Plants as Affected by Soil Moisture Content and Meteorological Conditions1. Agron. J. 1962, 54, 385–390. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Malone, R.W.; Ahuja, L.R.; Ma, L.; Wauchope, R.D.; Ma, Q.; Rojas, K.W. Application of the Root Zone Water Quality Model(RZWQM) to pesticide fate and transport: An overview. Pest Manag. Sci. 2004, 60, 205–221. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Reichle, R.H.; Houser, P.R.; Arsenault, K.R.; Verhoest, N.E.C.; Pauwels, V.R.N. Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model. J. Hydrometeorol. 2010, 11, 352–369. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; De Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, 50. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture: Downscale satellite-based soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Devereaux, J.A.; Laymon, C.A.; Tsegaye, T.; Houser, P.R.; Graham, S.T.; Rodell, M.; Van Oevelen, P.J.; Famiglietti, J.S.; Jackson, T.J.; Oevelen, P.J. Ground-based investigation of soil moisture variability within remote sensing footprints During the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res. 1999, 35, 1839–1851. [Google Scholar]
- Merlin, O.; Chehbouni, A.; Kerr, Y.; Goodrich, D. A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon ’90 data. Remote Sens. Environ. 2006, 101, 379–389. [Google Scholar] [CrossRef]
- Merlin, O.; Walker, J.; Chehbouni, A.; Kerr, Y. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sens. Environ. 2008, 112, 3935–3946. [Google Scholar] [CrossRef] [Green Version]
- Ines, A.V.M.; Mohanty, B.P.; Shin, Y. An unmixing algorithm for remotely sensed soil moisture. Water Resour. Res. 2013, 49, 408–425. [Google Scholar] [CrossRef]
- Gupta, V.K.; Waymire, E. Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res. Space Phys. 1990, 95, 1999. [Google Scholar] [CrossRef]
- Kim, G.; Barros, A.P. Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sens. Environ. 2002, 83, 400–413. [Google Scholar] [CrossRef]
- Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought monitoring with soil moisture active passive (SMAP) measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Qu, W.; Bogena, H.R.; Huisman, J.A.; VanderBorght, J.; Schuh, M.; Priesack, E.; Vereecken, H. Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 2015, 42, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, A.K.; De Lannoy, G.J.; Reichle, R.H.; Houser, P.R. Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA. Adv. Water Resour. 2013, 52, 19–33. [Google Scholar] [CrossRef]
- Vachaud, G.; De Silans, A.P.; Balabanis, P.; Vauclin, M. Temporal Stability of Spatially Measured Soil Water Probability Density Function1. Soil Sci. Soc. Am. J. 1985, 49, 822. [Google Scholar] [CrossRef]
- Cosh, M.H.; Jackson, T.J.; Starks, P.; Heathman, G. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrol. 2006, 323, 168–177. [Google Scholar] [CrossRef]
- Park, S.; Van De Giesen, N. Soil–landscape delineation to define spatial sampling domains for hillslope hydrology. J. Hydrol. 2004, 295, 28–46. [Google Scholar] [CrossRef]
- Baldwin, D.; Naithani, K.J.; Lin, H. Combined soil-terrain stratification for characterizing catchment-scale soil moisture variation. Geoderma 2017, 285, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Ceballos, A.; Scipal, K.; Wagner, W.; Martínez-Fernández, J. Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol. Process. 2005, 19, 1549–1566. [Google Scholar] [CrossRef]
- De Lange, R.; Beck, R.; Van De Giesen, N.; Friesen, J.; De Wit, A.; Wagner, W. Scatterometer-Derived Soil Moisture Calibrated for Soil Texture with a One-Dimensional Water-Flow Model. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4041–4049. [Google Scholar] [CrossRef]
- Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci. 2014, 18, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Mishra, V.; Cruise, J.F.; Hain, C.R.; Mecikalski, J.R.; Anderson, M.C. Development of soil moisture profiles through coupled microwave-thermal infrared observations in the southeastern United States. Hydrol. Earth Syst. Sci. 2018, 22, 4935–4957. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1998, 62, 847. [Google Scholar] [CrossRef]
- Lin, H.; Kogelmann, W.; Walker, C.; Bruns, M. Soil moisture patterns in a forested catchment: A hydropedological perspective. Geoderma 2006, 131, 345–368. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions: A Spatial Framework for Environmental Management. In Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making; Lewis Publishing: Boca Raton, FL, USA, 1995; pp. 49–62. [Google Scholar]
- Lin, H. Temporal Stability of Soil Moisture Spatial Pattern and Subsurface Preferential Flow Pathways in the Shale Hills Catchment. Vadose Zone J. 2006, 5, 317. [Google Scholar] [CrossRef]
- Rawls, W.J.; Ahuja, L.R.; Brakensiak, D.L.; Shirmohammadi, A. Infiltration and Soil Water Movement. In Handbook of Hydrology; McGraw-Hill Education: New York, NY, USA, 1993. [Google Scholar]
- IMKO. Trime-Fm Handheld Time Domain Reflectometry Probe User Manual; IMKO: Ettlingen, Germany, 2006. [Google Scholar]
- Hollinger, D.Y.; Goltz, S.M.; Davidson, E.; Lee, J.T.; Tu, K.; Valentine, H.T. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Glob. Chang. Biol. 1999, 5, 891–902. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Wilson, K.B.; Gu, L. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest--an assessment with the biophysical model CANOAK. Tree Physiol. 2002, 22, 1065–1077. [Google Scholar] [CrossRef] [Green Version]
- Euskirchen, E.S.; Bret-Harte, M.S.; Shaver, G.R.; Edgar, C.W.; Romanovsky, V.E. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska. Ecosystems 2017, 20, 960–974. [Google Scholar] [CrossRef]
- Miller, D.A.; White, R.A. A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling. Earth Interact. 1998, 2, 1–26. [Google Scholar] [CrossRef]
- Takagi, K.; Lin, H. Changing controls of soil moisture spatial organization in the Shale Hills Catchment. Geoderma 2012, 173, 289–302. [Google Scholar] [CrossRef]
- Odeh, I.; McBratney, A.; Chittleborough, D. Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression-kriging. Geoderma 1995, 67, 215–226. [Google Scholar] [CrossRef]
- U.S. Geological Survey. USGS Small-scale Dataset-100-Meter Resolution Elevation of the Conterminous United States 2012 TIFF; U.S. Geological Survey: Reston, VA, USA, 2012.
- Njoku, E.; Chan, T.; Crosson, W.; Limaye, A. Evaluation of the AMSR-E data calibration over land. Ital. J. Remote Sens. 2004, 30, 19–37. [Google Scholar]
- Kerr, Y.H.; Richaume, P.; Wigneron, J.P.; Gruhier, C.; Juglea, S.E.; Leroux, D.; Delwart, S.; Waldteufel, P.; Ferrazzoli, P.; Mahmoodi, A.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- O’Neill, P.; Bindlish, R.; Chan, S.; Njoku, E.; Jackson, T. Algorithm Theoretical Basis Document Level 2&3 Soil Moisture (Passive) Data Products; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018.
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef] [Green Version]
- Mladenova, I.; Jackson, T.; Njoku, E.; Bindlish, R.; Chan, S.; Cosh, M.; Holmes, T.; De Jeu, R.; Jones, L.; Kimball, J.; et al. Remote monitoring of soil moisture using passive microwave-based techniques—Theoretical basis and overview of selected algorithms for AMSR-E. Remote Sens. Environ. 2014, 144, 197–213. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Ryu, D.; Western, A.W.; Crow, W.T.; Su, C.H.; Robertson, D.R. Dual assimilation of satellite soil moisture to improve streamflow prediction in data-scarce catchments: Dual assimilation of satellite soil moisture. Water Resour. Res. 2016, 52, 5357–5375. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Sci. Soc. Am. J. 1980, 44, 892. [Google Scholar] [CrossRef]
- Özesmi, S.L.; Özesmi, U. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecol. Model. 1999, 116, 15–31. [Google Scholar] [CrossRef]
- Riedmiller, M.; Braun, H. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591. [Google Scholar]
- Anastasiadis, A.D.; Magoulas, G.D.; Vrahatis, M.N. New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 2005, 64, 253–270. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Haario, H.; Saksman, E.; Tamminen, J. An adaptive Metropolis algorithm. Bernoulli 2001, 7, 223–242. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Soetaert, K.; Petzoldt, T. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME. J. Stat. Softw. 2010, 33, 1–28. [Google Scholar] [CrossRef]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R. News 2006, 6, 7–11. [Google Scholar]
- Guo, L.; Fan, B.; Zhang, J.; Lin, H.S. Subsurface lateral flow in the Shale Hills catchment as revealed by a soil moisture mass balance method. Eur. J. Soil Sci. 2018, 67, 771–786. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.Y.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Bakkenes, M.; Temme, A.J.A.M.; Batjes, N.H.; ten Brink, B.J.E. S-World: A global soil map for environmental modelling. Land Degrad. Dev. 2017, 28, 22–33. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Macmillan, R.A.; Rossel, R.A.V. Multi-scale digital soil mapping with deep learning. Sci. Rep. 2018, 8, 15244. [Google Scholar] [CrossRef]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil 2018, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Scanlon, T.; Caylor, K. On the importance of accurate depiction of infiltration processes on modelled soil moisture and vegetation water stress. Ecohydrology 2010, 3, 155–165. [Google Scholar] [CrossRef]
- Laio, F.; Porporato, A.; Ridolfi, L.; Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv. Water Resour. 2001, 24, 707–723. [Google Scholar] [CrossRef]
- Pan, F.; Peters-Lidard, C.D.; Sale, M.J.; Peters-Lidard, C.D. An analytical method for predicting surface soil moisture from rainfall observations. Water Resour. Res. 2003, 39, 1314. [Google Scholar] [CrossRef]
- Manfreda, S. Runoff generation dynamics within a humid river basin. Nat. Hazards Earth Syst. Sci. 2008, 8, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Fiorentino, M. A stochastic approach for the description of the water balance dynamics in a river basin. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 723–748. [Google Scholar] [CrossRef]
- Isham, V.; Cox, D.R.; Rodríguez-Iturbe, I.; Porporato, A.; Manfreda, S. Representation of Space-Time Variability of Soil Moisture. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 4035–4055. [Google Scholar] [CrossRef]
- Manfreda, S.; Rodriguez-Iturbe, I.; Rodríguez-Iturbe, I. On the spatial and temporal sampling of soil moisture fields. Water Resour. Res. 2006, 42, W05409. [Google Scholar] [CrossRef]
- Faridani, F.; Farid, A.; Ansari, H.; Manfreda, S. A modified version of the SMAR model for estimating root-zone soil moisture from time-series of surface soil moisture. Water SA 2017, 43, 492. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Tuller, M.; Warrick, A.W.; Babaeian, E.; Parajuli, K.; Gohardoust, M.R.; Jones, S.B. An analytical model for estimation of land surface net water flux from near-surface soil moisture observations. J. Hydrol. 2019, 570, 26–37. [Google Scholar] [CrossRef]
- Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database. United States Department of Agriculture, Natural Resources Conservation Service. Available online: http://datagateway.nrcs.usda.gov/ (accessed on 9 January 2018).
- Mao, H.; Kathuria, D.; Duffield, N.; Mohanty, B.P. Gap filling of high-resolution soil moisture for SMAP/Sentinel-1: A two-layer machine learning-based framework. Water Resour. Res. 2019, 55, WR024902. [Google Scholar] [CrossRef]
Dataset Name (website downloaded) | Reference | Function | Time Range | |
SCAN/SNOTEL Soil Moisture Network (https://www.wcc.nrcs.usda.gov/scan/) | Schaefer et al. (2007) | Calibrate regional SMAR model | 2002–2018 | |
AMERIFLUX Monitoring Network (https://ameriflux.lbl.gov/) | Baldocchi et al. (2002); Hollinger et al. (1999); Euskirchen et al. (2017) | Calibrate regional SMAR model | 2004–2018 | |
Shale Hills Automatic Sensors (https://criticalzone.org/shale-hills/data/) | Liu and Lin (2015) | Calibrate Shale Hills SMAR model Validate regional SMAR model | 2007–2012 | |
Shale Hills Manual TDR (https://criticalzone.org/shale-hills/data/) | Lin et al. (2006) | Validate Shale Hills SMAR model | 2007–2011 | |
Shale Hills Soil-terrain Units | Baldwin et al. (2016b) | Run spatial SMAR at Shale Hills (1-m resolution) | N/A | |
AMSRE (AMSRE-E) Level 3 (https://disc.gsfc.nasa.gov/datasets/ LPRM_AMSRE_D_SOILM3_V002) | Njoku (2004); Mladenova et al. (2014) | Forcing for SMAR Model | 2002–2011 | |
SMOS Level 2 (https://earth.esa.int) | Kerr et al. (2012) | Forcing for SMAR Model | 2010–present | |
SMAP Level 3 (https://nsidc.org/data/smap) | Bindlish et al. (2018) | Forcing for SMAR Model | 2015–present | |
CONUS Soil Property Maps (http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov) | Miller and White (1998) | Run spatial SMAR for Eastern U.S. region (1-km resolution) | N/A | |
CONUS Digital Elevation Model (100 m resolution) (https://nationalmap.gov/small_scale/mld/elev100.html) | USGS (2012) | |||
Parameter Name | Parameter Symbol | Units * | Function | Estimation Method |
Relative Near-Surface Soil Moisture | S1 | - | Forcing for SMAR Model | Satellite Data Products |
Relative Near-Surface Field Capacity | SC1 | - | SMAR Model | Optimization |
Linear Water Loss Coefficient | a | day−1 | SMAR Model | |
Diffusion Coefficient | b | - | SMAR Model | |
Relative Wilting Level | SW | - | SMAR Model | |
Relative Root-Zone Field Capacity | SC2 | - | Initiate SMAR Model | Soil Texture and CONUS Soil Map |
Root Zone Porosity | φ2 | cm3 cm−3 | Convert relative soil moisture to volumetric soil moisture content |
Dataset | Model | Input Data | Data for Calibration | Data for Validation |
---|---|---|---|---|
Shale Hills RZSM Maps | Shale Hills SMAR | AMSRE | Shale Hills automatic RZSM | Shale Hills manual TDR RZSM |
SMAR Parameter Maps | Neural Networks | CONUS Soil, USGS Elevation | Calibrated SMAR parameters 1 | SCAN/SNOTEL, AMERIFLUX RZSM 2 |
EUS Regional RZSM Maps | Regional SMAR | AMSRE | SCAN/SNOTEL, AMERIFLUX RZSM | Shale Hills automatic RZSM |
SMOS | ||||
SMAP |
Soil–Terrain Unit | Error Statistic | Annual * | Q2 | Q3 | Q4 |
---|---|---|---|---|---|
Ernest Valley | RMSE | 0.063 | 0.053 | 0.043 | 0.057 |
Bias | 0.030 | 0.021 | 0.017 | 0.037 | |
Blairton Valley | RMSE | 0.053 | 0.064 | 0.047 | 0.045 |
Bias | 0.034 | 0.039 | 0.036 | 0.023 | |
Rushtown | RMSE | 0.075 | 0.095 | 0.052 | 0.052 |
Bias | 0.062 | 0.090 | 0.040 | 0.042 | |
Berks | RMSE | 0.054 | 0.060 | 0.043 | 0.046 |
Bias | 0.031 | 0.042 | 0.022 | 0.019 | |
Planar Hillslope | RMSE | 0.044 | 0.043 | 0.044 | 0.039 |
Bias | −0.008 | 0.009 | −0.024 | −0.007 |
Dataset | Satellite Platform | Sample Size | Root Mean Square Error [cm3 cm−3] | |||
---|---|---|---|---|---|---|
Arithmetic Mean | Geometric Mean | Single Value | ||||
Eastern Temperate Forests and Northern Forests Ecoregions (no Shale Hills) | AMSRE | 53 | 0.054 | 0.049 | -- | |
SMOS | 50 | 0.055 | 0.049 | -- | ||
SMAP | 61 | 0.057 | 0.047 | -- | ||
Shale Hills Automatic Sites | Planar Hill | AMSRE * | 1 | -- | -- | 0.036 |
Berks Convex Hill | 1 | -- | -- | 0.037 | ||
Rushtown Concave Hill | 1 | -- | -- | 0.025 | ||
Ernest Valley | 1 | -- | -- | 0.136 | ||
Blairton Valley | 1 | -- | -- | 0.052 | ||
All Sites Average | 5 | 0.042 | -- | -- |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldwin, D.; Manfreda, S.; Lin, H.; Smithwick, E.A.H. Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sens. 2019, 11, 2013. https://doi.org/10.3390/rs11172013
Baldwin D, Manfreda S, Lin H, Smithwick EAH. Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sensing. 2019; 11(17):2013. https://doi.org/10.3390/rs11172013
Chicago/Turabian StyleBaldwin, Douglas, Salvatore Manfreda, Henry Lin, and Erica A.H. Smithwick. 2019. "Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model" Remote Sensing 11, no. 17: 2013. https://doi.org/10.3390/rs11172013
APA StyleBaldwin, D., Manfreda, S., Lin, H., & Smithwick, E. A. H. (2019). Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sensing, 11(17), 2013. https://doi.org/10.3390/rs11172013