Integrating SEBAL with in-Field Crop Water Status Measurement for Precision Irrigation Applications—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Material
2.2. Soil Sampling and Management Zone Delineation
2.3. Soil Moisture Assessment and Variable Rate Irrigation System Assessment
2.4. Evapotranspiration, Biomass and Yield Estimates Using the Surface Energy Balance Algorithm for Land (SEBAL)
2.5. Crop Growth Data
2.6. SEBAL-Based and Soil Moisture Data-Based Water Stress Coefficient
2.7. Statistical Analyses
3. Results
3.1. Irrigation Management Zones (IMZs) Delineation
3.2. Soil Moisture Data and Irrigation Prescriptions
3.3. Measured and SEBAL-Based Data
3.4. SEBAL and Soil Moisture-Based Ks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsiao, T.C.; Steduto, P.; Fereres, E. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 2007, 25, 209–231. [Google Scholar] [CrossRef]
- Wallace, J. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Andrade, A.; Workneh, F.; Price, J.A.; Rush, C.M. Site-specific variable-rate irrigation as a means to enhance water use efficiency. Trans. ASABE 2016, 59, 239–249. [Google Scholar]
- Vellidis, G.; Liakos, V.; Porter, W.; Tucker, M.; Liang, X. A dynamic variable rate irrigation control system. In Proceedings of the 13th International Conference on Precision Agriculture, St. Louis, MI, USA, 31 July–3 August 2016. [Google Scholar]
- Liakos, V.; Porter, W.; Liang, X.; Tucker, M.; McLendon, A.; Vellidis, G. Dynamic Variable Rate Irrigation—A Tool for Greatly Improving Water Use Efficiency. Adv. Anim. Biosci. 2017, 8, 557–563. [Google Scholar]
- Vellidis, G.; Tucker, M.; Perry, C.; Reckford, D.; Butts, C.; Henry, H.; Liakos, V.; Hill, R.; Edwards, W. A soil moisture sensor-based variable rate irrigation scheduling system. In Precision Agriculture’13; Springer: Berlin, Germany, 2013; pp. 713–720. [Google Scholar]
- Meron, M.; Tsipris, J.; Orlov, V.; Alchanatis, V.; Cohen, Y. Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis. Agric. 2010, 11, 148–162. [Google Scholar]
- Chastain, D.R.; Snider, J.L.; Collins, G.D.; Perry, C.D.; Whitaker, J.; Byrd, S.A.; Oosterhuis, D.M.; Porter, W.M. Irrigation scheduling using predawn leaf water potential improves water productivity in drip-irrigated cotton. Crop Sci. 2016, 56, 3185–3195. [Google Scholar]
- Snider, J.; Chastain, D.; Porter, W. Plant-based irrigation scheduling. In Linking Physiology to Management; Snider, J., Oosterhuis, D., Eds.; The Cotton Foundation: Cordova, TN, USA, 2015. [Google Scholar]
- Bastiaanssen, W.G.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Teixeira, A.D.C.; Bastiaanssen, W.; Ahmad, M.; Bos, M. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil: Part A: Calibration and validation. Agric. For. Meteorol. 2009, 149, 462–476. [Google Scholar] [CrossRef]
- Sun, Z.; Gebremichael, M.; Ardö, J.; De Bruin, H. Mapping daily evapotranspiration and dryness index in the East African highlands using MODIS and SEVIRI data. Hydrol. Earth Syst. Sci. 2011, 15, 163–170. [Google Scholar] [Green Version]
- Papadavid, G.; Hadjimitsis, D.G.; Toulios, L.; Michaelides, S. A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water Resour. Manag. 2013, 27, 3493–3506. [Google Scholar] [CrossRef]
- Grosso, C.; Manoli, G.; Martello, M.; Chemin, Y.; Pons, D.; Teatini, P.; Piccoli, I.; Morari, F. Mapping maize evapotranspiration at field scale using SEBAL: A comparison with the FAO method and soil-plant model simulations. Remote Sens. 2018, 10, 1452. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Kite, G.; Droogers, P. Comparing evapotranspiration estimates from satellites, hydrological models and field data. J. Hydrol. 2000, 229, 3–18. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Noordman, E.; Pelgrum, H.; Davids, G.; Thoreson, B.; Allen, R. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Ramos, J.G.; Cratchley, C.R.; Kay, J.A.; Casterad, M.A.; Martínez-Cob, A.; Dominguez, R. Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of NE Spain. Agric. Water Manag. 2009, 96, 638–652. [Google Scholar] [CrossRef]
- Gowda, P.; Chavez, J.; Colaizzi, P.; Evett, S.; Howell, T.; Tolk, J. Remote sensing based energy balance algorithms for mapping ET: Current status and future challenges. Trans. ASABE 2007, 50, 1639–1644. [Google Scholar] [CrossRef]
- Alexandridis, T.; Cherif, I.; Chemin, Y.; Silleos, G.; Stavrinos, E.; Zalidis, G. Integrated methodology for estimating water use in Mediterranean agricultural areas. Remote Sens. 2009, 1, 445–465. [Google Scholar] [CrossRef]
- Vazifedoust, M.; Van Dam, J.; Bastiaanssen, W.; Feddes, R. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. Int. J. Remote Sens. 2009, 30, 2523–2545. [Google Scholar] [CrossRef]
- Brutsaert, W.; Sugita, M. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophys. Res. Atmos. 1992, 97, 18377–18382. [Google Scholar] [CrossRef]
- Chiericati, M.; Morari, F.; Sartori, L.; Ortiz, B.; Perry, C.; Vellidis, G. Delineating management zones to apply site-specific irrigation in the Venice lagoon watershed. Precis. Agric. 2007, 7, 599–606. [Google Scholar]
- Martello, M.; Berti, A.; Lusiani, G.; Lorigiola, A.; Morari, F. Technological and agronomic assessment of a Variable Rate Irrigation system integrated with soil sensor technologies. Adv. Anim. Biosci. 2017, 8, 564–568. [Google Scholar] [CrossRef]
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management zone analyst (MZA). Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Dukes, M.D.; Perry, C. Uniformity testing of variable-rate center pivot irrigation control systems. Precis. Agric. 2006, 7, 205. [Google Scholar] [CrossRef]
- ASABE. Test Procedure for Determining the Uniformity of Water Distribution of Center Pivot and Lateral Move Irrigation Machines Equipped with Spray of Sprinkler Nozzles; ANSI/ASABE Standars S436.1; American Society of Agricultural and Biological Engineering: St. Joseph, MI, USA, 2001. [Google Scholar]
- Heermann, D.F.; Hein, P.R. Performance characteristics of self-propelled center-pivot sprinkler irrigation system. Trans. Am. Soc. Agric. Eng. 1968, 2, 11–15. [Google Scholar]
- O’Shaughnessy, S.A.; Urrego, Y.F.; Evett, S.R.; Colaizzi, P.D.; Howell, T.A. Assessing application uniformity of a variable rate irrigation system in a windy location. Appl. Eng. Agric. 2013, 29, 497–510. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar]
- Allen, R.G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar]
- Manoli, G.; Bonetti, S.; Scudiero, E.; Morari, F.; Putti, M.; Teatini, P. Modeling Soil–Plant Dynamics: Assessing Simulation Accuracy by Comparison with Spatially Distributed Crop Yield Measurements. Vadose Zone J. 2015, 14. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G. SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems. Agric. Water Manag. 2007, 89, 287–296. [Google Scholar]
- Facchi, A.; Gharsallah, O.; Gandolfi, C. Evapotranspiration models for a maize agro-ecosystem in irrigated and rainfed conditions. J. Agric. Eng. 2013. [Google Scholar] [CrossRef]
- Abedinpour, M.; Sarangi, A.; Rajput, T.; Singh, M.; Pathak, H.; Ahmad, T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 2012, 110, 55–66. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar]
- Long, D.; Singh, V.P.; Li, Z.L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
Irrigation Event (DAP) | IMZ 1 (mm) | IMZ 2 (mm) | IMZ 3 (mm) | Uniform Zone (mm) |
---|---|---|---|---|
75 | 34 | 38 | 30 | 38 |
81 | 34 | 38 | 30 | 38 |
87 | 38 | 38 | 30 | 38 |
95 | 38 | 38 | 38 | 38 |
102 | 38 | 38 | 34 | 38 |
115 | 38 | 38 | 30 | 38 |
122 | 30 | 30 | 24 | 30 |
TOTAL | 250 | 258 | 216 | 258 |
Irrigation Management Zone | SEBAL Above-Ground Biomass (t DM ha−1) | Harvest Index | Measured Yield (t DM ha−1) | SEBAL-Estimated Yield (t DM ha−1) | Difference (%) |
---|---|---|---|---|---|
IMZ 1 | 20.77 | 0.50 | 10.92 | 10.53 | −3.6% |
IMZ 2 | 21.23 | 0.50 | 10.47 | 10.55 | 0.8% |
IMZ 3 | 20.66 | 0.50 | 10.53 | 10.33 | −1.9% |
Uniform | 21.07 | 0.50 | 10.85 | 10.53 | −2.9% |
Non-irrigated Zone | 20.02 | 0.50 | 9.39 | 9.99 | 6.4% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobbo, S.; Lo Presti, S.; Martello, M.; Panunzi, L.; Berti, A.; Morari, F. Integrating SEBAL with in-Field Crop Water Status Measurement for Precision Irrigation Applications—A Case Study. Remote Sens. 2019, 11, 2069. https://doi.org/10.3390/rs11172069
Gobbo S, Lo Presti S, Martello M, Panunzi L, Berti A, Morari F. Integrating SEBAL with in-Field Crop Water Status Measurement for Precision Irrigation Applications—A Case Study. Remote Sensing. 2019; 11(17):2069. https://doi.org/10.3390/rs11172069
Chicago/Turabian StyleGobbo, Stefano, Stefano Lo Presti, Marco Martello, Lorenza Panunzi, Antonio Berti, and Francesco Morari. 2019. "Integrating SEBAL with in-Field Crop Water Status Measurement for Precision Irrigation Applications—A Case Study" Remote Sensing 11, no. 17: 2069. https://doi.org/10.3390/rs11172069
APA StyleGobbo, S., Lo Presti, S., Martello, M., Panunzi, L., Berti, A., & Morari, F. (2019). Integrating SEBAL with in-Field Crop Water Status Measurement for Precision Irrigation Applications—A Case Study. Remote Sensing, 11(17), 2069. https://doi.org/10.3390/rs11172069