Spatial Mapping of the Groundwater Potential of the Geum River Basin Using Ensemble Models Based on Remote Sensing Images
Abstract
:1. Introduction
2. Study Area and Spatial Data Set
2.1. Study Area
2.2. Spatial Data Set
- As is the catchment area
- β represents the slope gradient measured in degrees
3. Methodology
3.1. Random Forest(RF) Model
3.2. Logistic Regression(LR) Model
3.3. Boosted Regression Tree (BRT) Model
3.4. GPP Mapping Process
4. Results
4.1. Correlation between GPP and the Variables
4.2. GPP Mapping and Validation
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The United Nations World Water Development Report 2018 (WWDR). In Nature-Based Solutions for Water; UNESCO: Paris, France, 2018.
- World Health Organization (WHO). Progress on Sanitation and Drinking Water: 2015 Update and mdg Assessment; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- World Economic Forum (WEF). The Global RISK Report 2016; WEF: Geneva, Switzerland, 2016. [Google Scholar]
- Vadiati, M.; Asghari-Moghaddam, A.; Nakhaei, M.; Adamowski, J.; Akbarzadeh, A. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. J. Environ. Manag. 2016, 184, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, S.A.; Moghaddam, D.D.; Kalantar, B.; Pradhan, B.; Kisi, O. A comparative assessment of gis-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 2017, 548, 471–483. [Google Scholar] [CrossRef]
- Kim, J.-C.; Jung, H.-S.; Lee, S. Groundwater productivity potential mapping using frequency ratio and evidential belief function and artificial neural network models: Focus on topographic factors. J. Hydroinf. 2018, 20, 1436–1451. [Google Scholar] [CrossRef]
- Ministry of Land, Transport and Maritime Affairs (MLTM). National Groundwater Monitoring Network in Korea Annual Report 2016; MLTM: Seoul, Korea, 2016.
- Kim, J.-C.; Yoon, J.-D.; Park, J.-S.; Choi, J.-Y.; Yoon, J.-H. Utilizing the revised universal soil loss equation (rusle) technique comparative analysis of soil erosion risk in the Geumhogang Riparian Area. Korean J. Remote Sens. 2018, 34, 179–190. [Google Scholar]
- Kim, D.; Jung, H.-S.; Kim, J.-C. Comparison of snow cover fraction functions to estimate snow depth of South Korea from modis imagery. Korean J. Remote Sens. 2017, 33, 401–410. [Google Scholar]
- Kim, J.-C.; Jung, H.-S. Application of landsat tm/etm+ images to snow variations detection by volcanic activities at southern volcanic zone, Chile. Korean J. Remote Sens. 2017, 33, 287–299. [Google Scholar]
- Park, S.-H.; Jung, H.-S.; Choi, J.; Jeon, S. A quantitative method to evaluate the performance of topographic correction models used to improve land cover identification. Adv. Space Res. 2017, 60, 1488–1503. [Google Scholar] [CrossRef]
- Baek, W.-K.; Jung, H.-S.; Jo, M.-J.; Lee, W.-J.; Zhang, L. Ground subsidence observation of solid waste landfill park using multi-temporal radar interferometry. Int. J. Urban Sci. 2018, 1–16. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.-J.; Jung, H.-S. Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea. Appl. Sci. 2017, 7, 683. [Google Scholar] [CrossRef]
- Kim, J.-C.; Kim, D.-H.; Park, S.-H.; Jung, H.-S.; Shin, H.-S. Application of landsat images to snow cover changes by volcanic activities at Mt. Villarica and Mt. Lliama, Chile. Korean J. Remote Sens. 2014, 30, 341–350. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Park, S.-H.; Jung, H.-S.; Baek, W.-K. Classification of natural and artificial forests from kompsat-3/3a/5 images using artificial neural network. Korean J. Remote Sens. 2018, 34, 1399–1414. [Google Scholar]
- Baek, W.-K.; Jung, H.-S.; Chae, S.-H.; Lee, W.-J. Two-dimensional velocity measurements of uvêrsbreen glacier in Svalbard using terrasar-x offset tracking approach. Korean J. Remote Sens. 2018, 34, 495–506. [Google Scholar]
- Al-Abadi, A.M. Modeling of groundwater productivity in northeastern Wasit Governorate, Iraq using frequency ratio and Shannon’s entropy models. Appl. Water Sci. 2015, 7, 699–716. [Google Scholar] [CrossRef]
- Jothibasu, A.; Anbazhagan, S. Spatial mapping of groundwater potential in ponnaiyar river basin using probabilistic-based frequency ratio model. Model. Earth Syst. Environ. 2017, 3, 33. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour. Manag. 2015, 29, 5217–5236. [Google Scholar] [CrossRef]
- Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. Groundwater potential mapping using c5. 0, random forest, and multivariate adaptive regression spline models in gis. Environ. Monit. Assess. 2018, 190, 149. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of gis-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Self-learning random forests model for mapping groundwater yield in data-scarce areas. Nat. Resour. Res. 2018, 28, 1–19. [Google Scholar] [CrossRef]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. Gis-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 1–19. [Google Scholar] [CrossRef]
- Park, S.; Hamm, S.-Y.; Jeon, H.-T.; Kim, J. Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using r and gis. Sustainability 2017, 9, 1157. [Google Scholar] [CrossRef]
- Zandi, J.; Ghazvinei, P.T.; Hashim, R.; Yusof, K.B.W.; Ariffin, J.; Motamedi, S. Mapping of regional potential groundwater springs using logistic regression statistical method. Water Resour. 2016, 43, 48–57. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.-J. Susceptibility mapping of Umyeonsan using logistic regression (lr) model and post-validation through field investigation. Korean J. Remote Sens. 2017, 33, 1047–1060. [Google Scholar]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul Metropolitan City, Korea. Geomat. Nat. Haz. Risk. 2017, 8, 1185–1203. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. Gis-based groundwater spring potential mapping using data mining boosted regression tree and probabilistic frequency ratio models in iran. AIMS Geosci. 2017, 3, 91–115. [Google Scholar]
- Lee, S.; Hong, S.-M.; Jung, H.-S. Gis-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong City in Korea. Geocarto. Int. 2018, 33, 847–861. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour. Manag. 2017. [Google Scholar] [CrossRef]
- Oh, H.-J.; Kadavi, P.R.; Lee, C.-W.; Lee, S. Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat. Nat. Haz. Risk. 2018, 9, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.; Alizadeh, E.; Asadollahpour Kotenaee, S.; Shahabi, H.; Beiranvand Pour, A.; Panahi, M.; Bin Ahmad, B.; Saro, L. Social vulnerability assessment using artificial neural network (ann) model for earthquake hazard in Tabriz City, Iran. Sustainability 2018, 10, 3376. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H.-S. Mapping oil spills from dual-polarized sar images using an artificial neural network: Application to oil spill in the Kerch Strait in November 2007. Sensors 2018, 18, 2237. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Song, W.; Lee, M.-J. Habitat potential mapping of marten (martes flavigula) and leopard cat (prionailurus bengalensis) in South Korea using artificial neural network machine learning. Appl. Sci. 2017, 7, 912. [Google Scholar] [CrossRef]
- Lee, S.; Song, K.-Y.; Kim, Y.; Park, I. Regional groundwater productivity potential mapping using a geographic information system (gis) based artificial neural network model. Hydrogeol. J. 2012, 20, 1511–1527. [Google Scholar] [CrossRef]
- Sokeng, V.J.; Kouamé, F.; Ngatcha, B.N.; N’da, H.D.; You, L.A.; Rirabe, D. Delineating groundwater potential zones in western cameroon highlands using gis based artificial neural networks model and remote sensing data. Int. J. Innovation Appl. Stud. 2016, 15, 747–759. [Google Scholar]
- Ghorbani Nejad, S.; Falah, F.; Daneshfar, M.; Haghizadeh, A.; Rahmati, O. Delineation of groundwater potential zones using remote sensing and gis-based data-driven models. Geocarto. Int. 2017, 32, 167–187. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.-S.; Oh, H.-J. Application of a weights-of-evidence method and gis to regional groundwater productivity potential mapping. J. Environ. Manag. 2012, 96, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Tahmassebipoor, N.; Rahmati, O.; Noormohamadi, F.; Lee, S. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci. 2016, 9, 79. [Google Scholar] [CrossRef]
- Mogaji, K.A.; San Lim, H. Application of dempster-shafer theory of evidence model to geoelectric and hydraulic parameters for groundwater potential zonation. NRIAG J. Astron. Geophys. 2018, 7, 134–148. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Beheshtirad, M. Assessment of a data-driven evidential belief function model and gis for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto. Int. 2015, 30, 662–685. [Google Scholar] [CrossRef]
- Zeinivand, H.; Ghorbani Nejad, S. Application of gis-based data-driven models for groundwater potential mapping in Kuhdasht Region of Iran. Geocarto. Int. 2018, 33, 651–666. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto. Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Nsiah, E.; Appiah-Adjei, E.K.; Adjei, K.A. Hydrogeological delineation of groundwater potential zones in the nabogo basin, ghana. J. Afr. Earth Sci. 2018, 143, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Hyun, Y.; Lee, M.-J. Groundwater potential mapping using data mining models of big data analysis in Goyang-Si, South Korea. Sustainability 2019, 11, 1678. [Google Scholar] [CrossRef]
- Jo, M.J.; Jung, H.S.; Won, J.S. Detecting the source location of recent summit inflation via three-dimensional insar observation of Kilauea volcano. Remote Sens. 2015, 7, 14386–14402. [Google Scholar] [CrossRef]
- Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Tam, V.T.; Nga, T.T.V. Assessment of urbanization impact on groundwater resources in hanoi, vietnam. J. Environ. Manag. 2018, 227, 107–116. [Google Scholar] [CrossRef]
- Ministry for Food, Agriculture, Forestry and Fisheries (MFAFF). Rural Groundwater Survey Report (Okcehon Gun); MFAFF: Seoul, Korea, 2010.
- Bradbury, K.R.; Rothschild, E.R. A computerized technique for estimating the hydraulic conductivity of aquifers from specific capacity data. Groundwater 1985, 23, 240–246. [Google Scholar] [CrossRef]
- Razack, M.; Huntley, D. Assessing transmissivity from specific capacity in a large and heterogeneous alluvial aquifer. Groundwater 1991, 29, 856–861. [Google Scholar] [CrossRef]
- Oh, K.-Y.; Jung, H.-S.; Lee, M.-J. Accuracy evaluation of dem generated from satellite images using automated geo-positioning approach. Korean J. Remote Sens. 2017, 33, 69–77. [Google Scholar] [CrossRef]
- Moore, I.; Burch, G. Modelling erosion and deposition: Topographic effects. Transact. ASAE 1986, 29, 1624–1630. [Google Scholar] [CrossRef]
- Claps, P.; Fiorentino, M.; Oliveto, G. Informational entropy of fractal river networks. J. Hydrol. 1996, 187, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.J. Index that quantifies topographic heterogeneity. Intermountain J. Sci. 1999, 5, 23–27. [Google Scholar]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin, Germany, 2012; pp. 157–175. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Grömping, U. Variable importance assessment in regression: Linear regression versus random forest. Am. Statist. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Lee, S.; Talib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
Category | Factors | Data Type | Scale |
---|---|---|---|
Geological map 1 | Hydrogeology | Polygon | 1:50,000 |
Land cover map 2 | Land cover | Polygon | 1:5000 |
Soil map 3 | Soil texture | Polygon | 1:25,000 |
Topographic map 4 | Slope gradient Hydraulic slope gradient Relative slope position Valley depth Topographic Wetness Index (TWI) Slope Length factor (LS-factor) Drainage basin Distance from lineament Line density Distance from fault Distance from channel network Depth of groundwater Terrain Ruggedness Index (TRI) Convergence index Plan curvature | GRID | 1:5000 |
Type of Aquifers | SPC (m3/day/m) | T (m2/day) | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Average | Median | Min | Max | Average | Median | |
Porous rock saturated aquifers | 2.23 | 769.23 | 20.07 | 4.88 | 0.70 | 489.91 | 23.78 | 2.61 |
Alluvial aquifer | 2.67 | 283.33 | 37.60 | 0.83 | 73.16 | 11.30 |
Factor | Class | No. of Pixels in Domain a | % of Domain | T ≥ 2.61 b | SPC ≥ 4.88 c | Logistic Regression Coefficient | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. of Data 1 | % of Data 1 | FR of Data 1 | No. of Data 1 | %of Data 1 | FR of Data 1 | T ≥ 2.61 | SPC ≥ 4.88 | ||||
Slope gradient (degree) | 0–5.11 | 113,319 | 18.85 | 25 | 58.14 | 3.09 | 24 | 55.81 | 2.96 | −0.58 | −0.74 |
5.11–13.97 | 128,401 | 21.35 | 16 | 37.21 | 1.74 | 16 | 37.21 | 1.74 | |||
13.97–20.82 | 112,842 | 18.77 | 2 | 4.65 | 0.25 | 3 | 6.98 | 0.37 | |||
20.82–28.18 | 118,770 | 19.75 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | |||
28.18–90 | 127,988 | 21.28 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | |||
Hydraulic slope (degree) | 0–5 | 154,281 | 25.66 | 33 | 76.74 | 2.99 | 35 | 81.40 | 3.17 | −0.40 | −0.84 |
5–10 | 113,239 | 18.83 | 8 | 18.60 | 0.99 | 7 | 16.28 | 0.86 | |||
10–20 | 178,303 | 29.65 | 2 | 4.65 | 0.16 | 1 | 2.33 | 0.08 | |||
20–30 | 101,221 | 16.83 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | |||
30–90 | 54,276 | 9.03 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | |||
Relative slope position | 0–0.0275 | 118,086 | 19.64 | 17 | 39.53 | 2.01 | 22 | 51.16 | 2.61 | 0.32 | −0.52 |
0.0275–0.2235 | 122,639 | 20.40 | 19 | 44.19 | 2.17 | 14 | 32.56 | 1.60 | |||
0.2235–0.4784 | 121,248 | 20.16 | 2 | 4.65 | 0.23 | 2 | 4.65 | 0.23 | |||
0.4784–0.7529 | 120,084 | 19.97 | 1 | 2.33 | 0.12 | 3 | 6.98 | 0.35 | |||
0.7529–1 | 119,263 | 19.83 | 4 | 9.30 | 0.47 | 2 | 4.65 | 0.23 | |||
Valley depth (m) | 0–19.1231 | 118,571 | 19.72 | 8 | 18.60 | 0.94 | 6 | 13.95 | 0.47 | −0.16 | −0.28 |
19.1231–37.0510 | 126,094 | 20.97 | 17 | 39.53 | 1.89 | 12 | 27.91 | 0.79 | |||
37.0510–58.5645 | 122,756 | 20.41 | 5 | 11.63 | 0.57 | 11 | 25.58 | 1.25 | |||
58.5645–88.4443 | 119,947 | 19.95 | 10 | 23.26 | 1.17 | 8 | 18.60 | 1.42 | |||
88.4443–304.7743 | 113,952 | 18.95 | 3 | 6.98 | 0.37 | 6 | 13.95 | 1.07 | |||
TWI | −0.27–3.6 | 117,062 | 19.47 | 2 | 4.65 | 0.24 | 1 | 2.33 | 0.12 | 0.02 | −0.11 |
3.6–4.35 | 129,046 | 21.46 | 2 | 4.65 | 0.22 | 3 | 6.98 | 0.33 | |||
4.35–5.4 | 118,685 | 19.74 | 3 | 6.98 | 0.35 | 2 | 4.65 | 0.24 | |||
5.4–7.8 | 117,832 | 19.59 | 17 | 39.53 | 2.02 | 19 | 44.19 | 2.26 | |||
7.8–25.37 | 118,695 | 19.74 | 19 | 44.19 | 2.24 | 18 | 41.86 | 2.12 | |||
LS factor | 0–1.0473 | 117,812 | 19.59 | 25 | 58.14 | 2.97 | 25 | 58.14 | 2.97 | −0.56 | 0.23 |
1.0473–3.7223 | 119,314 | 19.84 | 14 | 32.56 | 1.64 | 13 | 30.23 | 1.52 | |||
3.7223–6.3280 | 123,649 | 20.56 | 3 | 6.98 | 0.34 | 3 | 6.98 | 0.34 | |||
6.3280–8.9336 | 123,837 | 20.609 | 1 | 2.33 | 0.11 | 2 | 4.65 | 0.23 | |||
8.9336–47.4598 | 116,708 | 19.41 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | |||
Lineament density (km/km2) | 0–0.6219 | 118,888 | 19.77 | 4 | 9.30 | 0.47 | 4 | 9.30 | 0.47 | 0.06 | 0.05 |
0.6219–1.0305 | 123,348 | 20.51 | 7 | 16.28 | 0.79 | 7 | 16.28 | 0.79 | |||
1.0305–1.4036 | 123,437 | 20.53 | 9 | 20.93 | 1.02 | 11 | 25.58 | 1.25 | |||
1.4036–1.8300 | 118,218 | 19.66 | 11 | 25.58 | 1.30 | 12 | 27.91 | 1.42 | |||
1.8300–4.5306 | 117,429 | 19.53 | 12 | 27.91 | 1.43 | 9 | 20.93 | 1.07 | |||
Distance from fault (m) | 0–783 | 116,641 | 19.40 | 10 | 23.26 | 1.20 | 11 | 25.58 | 1.32 | −0.13 | −0.27 |
783–1740 | 122,116 | 20.31 | 14 | 32.56 | 1.60 | 10 | 23.26 | 1.15 | |||
1740–2957 | 122,194 | 20.32 | 8 | 18.60 | 0.92 | 8 | 18.60 | 0.92 | |||
2957–4610 | 120,773 | 20.08 | 7 | 16.28 | 0.81 | 7 | 16.28 | 0.81 | |||
4610–11,090 | 119,596 | 19.89 | 4 | 9.30 | 0.47 | 7 | 16.28 | 0.82 | |||
Distance from lineament (m) | 0–84 | 133,995 | 22.28 | 14 | 32.56 | 1.46 | 15 | 34.88 | 1.57 | 0.12 | 0.05 |
84–182 | 119,978 | 19.95 | 8 | 18.60 | 0.93 | 9 | 20.93 | 1.05 | |||
182–308 | 119,286 | 19.84 | 8 | 18.60 | 0.94 | 6 | 13.95 | 0.70 | |||
308–510 | 117,397 | 19.52 | 8 | 18.60 | 0.95 | 9 | 20.93 | 1.07 | |||
510–1804 | 110,664 | 18.40 | 5 | 11.63 | 0.63 | 4 | 9.30 | 0.51 | |||
Distance from channel network (m) | 0–10.7073 | 126,750 | 21.08 | 25 | 58.14 | 2.76 | 28 | 65.12 | 3.09 | −0.68 | −0.05 |
10.7073–29.9805 | 124,456 | 20.70 | 15 | 34.88 | 1.69 | 12 | 27.91 | 1.35 | |||
29.9805–57.8195 | 120,035 | 19.96 | 1 | 2.33 | 0.12 | 2 | 4.65 | 0.23 | |||
57.8195–104.9317 | 115,499 | 19.21 | 1 | 2.33 | 0.12 | 1 | 2.33 | 0.12 | |||
104.9317–546.0730 | 114,580 | 19.05 | 1 | 2.33 | 0.12 | 0 | 0.00 | 0.00 | |||
Depth of ground water (m) | 0–6 | 77,398 | 12.87 | 8 | 18.60 | 1.45 | 8 | 18.60 | 1.45 | −0.37 | 0.33 |
6–12 | 165,831 | 27.58 | 22 | 51.16 | 1.86 | 24 | 55.81 | 2.02 | |||
12–18 | 118,083 | 19.64 | 9 | 20.93 | 1.07 | 9 | 20.93 | 1.07 | |||
18–24 | 87,655 | 14.58 | 2 | 4.65 | 0.32 | 1 | 2.33 | 0.16 | |||
24–30 | 152,353 | 25.34 | 2 | 4.65 | 0.18 | 1 | 2.33 | 0.09 | |||
Drainage basin (km2) | 0–100.8281 | 120,219 | 19.99 | 6 | 13.95 | 0.70 | 7 | 16.28 | 0.81 | 0.60 | 0.32 |
100.8281–125.4287 | 123,553 | 20.55 | 17 | 39.53 | 1.92 | 19 | 44.19 | 2.15 | |||
125.4287–157.2648 | 121,267 | 20.17 | 7 | 16.28 | 0.81 | 7 | 16.28 | 0.81 | |||
157.2648–202.1247 | 120,238 | 20.00 | 11 | 25.58 | 1.28 | 9 | 20.93 | 1.05 | |||
202.1247–442.3421 | 116,043 | 19.30 | 2 | 4.65 | 0.24 | 1 | 2.33 | 0.12 | |||
Terrain Ruggedness Index (TRI) | 0–0.6067 | 114,532 | 19.05 | 22 | 51.16 | 2.69 | 24 | 55.81 | 2.93 | 0.75 | 0.52 |
0.6067–1.9716 | 130,756 | 21.74 | 19 | 44.19 | 2.03 | 16 | 37.21 | 1.71 | |||
1.9716–3.0333 | 125,987 | 20.95 | 1 | 2.33 | 0.11 | 1 | 2.33 | 0.11 | |||
3.0333–4.0950 | 115,656 | 19.23 | 1 | 2.33 | 0.12 | 2 | 4.65 | 0.24 | |||
4.0950–38.0000 | 114,389 | 19.02 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | |||
Hydro geology | Unconsolidated clastic rock | 94,010 | 15.63 | 17 | 39.53 | 2.53 | 17 | 39.53 | 2.53 | −0.20 | −1.44 |
Intrusive igneous rocks | 255,683 | 42.52 | 19 | 44.19 | 1.04 | 17 | 39.53 | 0.93 | 0.04 | −0.99 | |
Dolomite rock | 9173 | 1.53 | 1 | 2.33 | 1.52 | 0 | 0.00 | 0.00 | 0.75 | −11.90 | |
Non-porous volcanic rock | 431 | 0.07 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | −8.13 | −8.27 | |
Clastic sedimentary rock | 15,536 | 2.58 | 1 | 2.33 | 0.90 | 1 | 2.33 | 0.90 | 1.02 | −0.26 | |
Carbonate rocks | 3608 | 0.60 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 1.76 | 0.71 | |
Metamorphic rocks | 222,879 | 37.06 | 5 | 11.63 | 0.31 | 8 | 18.60 | 0.50 | 0 | 0 | |
Land cover | Barren land | 5464 | 0.91 | 1 | 2.33 | 2.56 | 0 | 0.00 | 0.00 | 0.50 | 10.05 |
Field | 77,488 | 12.89 | 13 | 30.23 | 2.35 | 13 | 30.23 | 2.35 | 0.21 | 10.18 | |
Paddy field | 62,789 | 10.44 | 18 | 41.86 | 4.01 | 18 | 41.86 | 4.01 | 0.37 | 1.08 | |
Mixed forest | 395,630 | 65.79 | 4 | 9.30 | 0.14 | 5 | 11.63 | 0.18 | −1.15 | 9.82 | |
Water | 24,128 | 4.01 | 1 | 2.33 | 0.58 | 0 | 0.00 | 0.00 | −0.53 | 0.36 | |
Wetlands | 3963 | 0.66 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | −11.64 | 10.24 | |
Urban area | 21,945 | 3.65 | 5 | 11.63 | 3.19 | 6 | 13.95 | 3.82 | 0.53 | 10.97 | |
Grass land | 9913 | 1.65 | 1 | 2.33 | 1.41 | 1 | 2.33 | 1.41 | 0.00 | 0.00 | |
Soil texture | High Infiltration rate | 247,471 | 41.15 | 21 | 48.84 | 1.19 | 23 | 53.49 | 1.30 | 0.50 | 10.71 |
Moderate infiltration rate | 105,563 | 17.56 | 10 | 23.26 | 1.32 | 7 | 16.28 | 0.93 | 0.21 | 10.24 | |
Low Infiltration rate | 199,492 | 33.18 | 7 | 16.28 | 0.49 | 8 | 18.60 | 0.56 | 0.37 | 10.03 | |
Very slow infiltration rate | 22,539 | 3.75 | 4 | 9.30 | 2.48 | 5 | 11.63 | 3.10 | −1.15 | 10.22 | |
Water | 26,255 | 4.37 | 1 | 2.33 | 0.53 | 0 | 0.00 | 0.00 | −0.53 | 0.00 | |
Plan curvature | Concave (−) | 308,875 | 51.37 | 29 | 67.44 | 1.31 | 27 | 62.79 | 1.22 | 0.35 | −1.20 |
0 | 1409 | 0.23 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | −9.79 | −9.66 | |
Convex (+) | 291,036 | 48.40 | 14 | 32.56 | 0.67 | 16 | 37.21 | 0.77 | 0.00 | 0.00 | |
Convergence index | Concave (−) | 294,208 | 48.93 | 26 | 60.47 | 1.24 | 26 | 60.47 | 1.24 | 0.43 | 0.91 |
0 | 1434 | 0.24 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | −9.67 | −7.87 | |
Convex (+) | 305,678 | 50.83 | 17 | 39.53 | 0.78 | 17 | 39.53 | 0.78 | 0.00 | 0.00 |
Factor | Boosted Regression Trees | Random Forest | ||
---|---|---|---|---|
T ≥ 2.61 | SPC ≥ 4.88 | T ≥ 2.61 | SPC ≥ 4.88 | |
Land cover | 1.000000 | 1.000000 | 1.000000 | 0.823951 |
Relative slope position | 0.250930 | 0.690807 | 0.139181 | 0.698339 |
Hydraulic slope gradient | 0.282250 | 0.509170 | 0.231625 | 0.723901 |
Depth of groundwater | 0.176912 | 0.484824 | 0.121499 | 0.970446 |
Slope gradient | 0.297003 | 0.480254 | 0.302406 | 0.677954 |
Distance from channel network | 0.259162 | 0.457526 | 0.109057 | 0.845124 |
Hydrogeology | 0.371401 | 0.455671 | 0.113639 | 0.843345 |
Topographic Wetness Index (TWI) | 0.217793 | 0.349910 | 0.255783 | 0.642187 |
LS-factor | 0.251877 | 0.323731 | 0.250476 | 0.850150 |
Terrain Ruggedness Index (TRI) | 0.332975 | 0.311433 | 0.162339 | 0.723926 |
Distance from fault | 0.170614 | 0.302349 | 0.523101 | 0.933228 |
Soil texture | 0.181788 | 0.301434 | 0.556208 | 1.000000 |
Drainage basin | 0.169170 | 0.253417 | 0.149756 | 0.841819 |
Line density | 0.101006 | 0.214975 | 0.260951 | 0.612850 |
Distance from lineament | 0.114429 | 0.201170 | 0.174736 | 0.403119 |
Convergence index | 0.061917 | 0.135385 | 0.155390 | 0.347651 |
Valley depth | 0.155604 | 0.133019 | 0.070290 | 0.532714 |
Plan curvature | 0.052066 | 0.060235 | 0.134918 | 0.392855 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-C.; Jung, H.-S.; Lee, S. Spatial Mapping of the Groundwater Potential of the Geum River Basin Using Ensemble Models Based on Remote Sensing Images. Remote Sens. 2019, 11, 2285. https://doi.org/10.3390/rs11192285
Kim J-C, Jung H-S, Lee S. Spatial Mapping of the Groundwater Potential of the Geum River Basin Using Ensemble Models Based on Remote Sensing Images. Remote Sensing. 2019; 11(19):2285. https://doi.org/10.3390/rs11192285
Chicago/Turabian StyleKim, Jeong-Cheol, Hyung-Sup Jung, and Saro Lee. 2019. "Spatial Mapping of the Groundwater Potential of the Geum River Basin Using Ensemble Models Based on Remote Sensing Images" Remote Sensing 11, no. 19: 2285. https://doi.org/10.3390/rs11192285
APA StyleKim, J. -C., Jung, H. -S., & Lee, S. (2019). Spatial Mapping of the Groundwater Potential of the Geum River Basin Using Ensemble Models Based on Remote Sensing Images. Remote Sensing, 11(19), 2285. https://doi.org/10.3390/rs11192285