Earth Observations-Based Evapotranspiration in Northeastern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. ET Estimation Scheme
2.2. Canopy Resistance
2.3. Parameterizing the Constrain of Soil Moisture
2.4. Clear Sky EF and ET Estimation
2.5. Data Collection
2.6. Application of ET Estimation in Thailand
- (1)
- (2)
- The net radiation is partitioned according to Equations (3)–(5), while during the rainy days in the wet season Rni is estimated by reversing PM equation.
- (3)
- Scatterplot of clear sky LST and NDVI is prepared, and triangle method is applied to retrieve clear sky EF during the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) pass time according to Equation (15) in the dry season. The daily EF is assumed to be equal to the EF during the satellite pass time, and daily ET is estimated according to the daily EF and daily available energy;
- (4)
- Daily and f(θroot) of clear days are obtained by reversing Equations (1) and (6), and SMSI is estimated using Equation (12) during these clear days;
- (5)
- SMSI time series is reconstructed by linear interpolation of the SMSI during clear days, hence daily f(θroot) is obtained according to Equation (13) in the dry season; while in the wet season SMSI is taken as constant;
- (6)
- f(θroot) time series is then applied in Equation (6) to estimate daily canopy stomatal resistance, and applied to Equations (1) and (2) to estimate plant transpiration and soil evaporation for all sky conditions.
3. Results
3.1. The Constriant of Soil Moisture on Canopy Resistance and ET
3.2. Validating Clear Sky EF by MODIS
3.3. Comparison of Estimated ET with Flux Tower Observations
3.4. Spatial Variation of ET in Northeastern Thailand
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwalm, C.R.; Williams, C.A.; Schaefer, K. Carbon consequences of global hydrologic change. J. Geophys. Res.-Biogeosci. 2011, 116, 1948–2009. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Li, T.; Wang, B.; Wu, G.X. Onset of the summer monsoon over the Indochina Peninsula: Climatology and interannual variations. J. Clim. 2002, 15, 3206–3221. [Google Scholar] [CrossRef]
- Tanaka, N.; Kume, T.; Yoshifuji, N.; Tanaka, K.; Takizawa, H.; Shiraki, K.; Tantasirin, C.; Tangtham, N.; Suzuki, M. A review of evapotranspiration estimates from tropical forests in Thailand and adjacent regions. Agric. For. Meteorol. 2008, 148, 807–819. [Google Scholar] [CrossRef]
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Sci. Total Environ. 2018, 621, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Hu, G.C.; Jia, L. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Nishida, K.; Nemani, R.R.; Glassy, J.M.; Running, S.W. Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens. 2003, 41, 493–501. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.L.; Wang, Q.; Li, P.H. Coupling SEBAL with a new radiation module and MODIS products for better estimation of evapotranspiration. Hydrol. Sci. J.-J. Des Sci. Hydrol. 2016, 61, 1535–1547. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.Z.; Yan, G.J.; Wan, Z.M.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Xi, G.; Liu, S.; Huang, C.; Yan, Y.; Liu, G. Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland. Hydrol. Earth Syst. Sci. 2009, 13, 1775–1787. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETO by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ohta, T.; Nakai, T.; Kuwada, T.; Daikoku, K.; Iida, S.; Yabuki, H.; Kononov, A.V.; van der Molen, M.K.; Kodama, Y.; et al. Responses of surface conductance to forest environments in the Far East. Agric. For. Meteorol. 2008, 148, 1926–1940. [Google Scholar] [CrossRef]
- Tang, R.L.; Li, Z.L.; Tang, B.H. An application of the T-s-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in and and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.D.; Floyer, J.A.; Asplin, M.G.; McKendry, I.G. Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteorol. 2006, 139, 224–236. [Google Scholar] [CrossRef]
- Gao, X.J.; Giorgi, F. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob. Planet. Chang. 2008, 62, 195–209. [Google Scholar] [CrossRef]
- Kim, W.; Miyata, A.; Ashraf, A.; Maruyama, A.; Chidthaisong, A.; Jaikaeo, C.; Komori, D.; Ikoma, E.; Sakurai, G.; Seoh, H.H.; et al. FluxPro as a realtime monitoring and surveilling system for eddy covariance flux measurement. J. Agric. Meteorol. 2015, 71, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.K.; Jia, L. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale. Water 2014, 6, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.K.; Jia, L.; Hu, G.C.; Zhou, J. Mapping of Interception Loss of Vegetation in the Heihe River Basin of China Using Remote Sensing Observations. IEEE Geosci. Remote Sens. Lett. 2015, 12, 23–27. [Google Scholar]
- Zheng, C.L.; Jia, L. Global rainfall interception loss derived from multi-source observations. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 3532–3534. [Google Scholar]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Pena-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.M.; Lu, X.J.; Zheng, H.X.; Wang, Y.P.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [Green Version]
- Michel, D.; Jimenez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q.; et al. The WACMOS-ET project—Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [Google Scholar] [CrossRef]
- Hu, G.C.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 Global Terrestrial Evapotranspiration Products in Various Climates and Land Cover Types in Asia. KSCE J. Civ. Eng. 2012, 16, 229–238. [Google Scholar] [CrossRef]
- Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US. Hydrol. Earth Syst. Sci. 2018, 22, 2311–2341. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.T.; Long, D.; Guan, H.D.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resour. Res. 2015, 51, 3145–3165. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.L.; Jia, L.; Hu, G.; Lu, J.; Wang, K.; Li, Z. Global Evapotranspiration derived By ETMonitor model based on Earth Observations. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 222–225. [Google Scholar]
- Jia, L.; Zheng, C.; Hu, G.; Menenti, M. Evapotranspiration. In Comprehensive Remote Sensing, 2nd ed.; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; Volume 4, pp. 25–50. ISBN 9780128032213. [Google Scholar]
- Klingberg, J.; Engardt, M.; Uddling, J.; Karlsson, P.E.; Pleijel, H. Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus Ser. A-Dyn. Meteorol. Oceanogr. 2011, 63, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Anav, A.; Proietti, C.; Menut, L.; Carnicelli, S.; De Marco, A.; Paoletti, E. Sensitivity of stomatal conductance to soil moisture: Implications for tropospheric ozone. Atmos. Chem. Phys. 2018, 18, 5747–5763. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Wood, E.F. Impact of model structure and parameterization on Penman-Monteith type evaporation models. J. Hydrol. 2015, 525, 521–535. [Google Scholar] [CrossRef]
- Marechaux, I.; Bartlett, M.K.; Sack, L.; Baraloto, C.; Engel, J.; Joetzjer, E.; Chave, J. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 2015, 29, 1268–1277. [Google Scholar] [CrossRef]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P.; et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Li, Z.S.; Jia, L.; Lu, J. On Uncertainties of the Priestley-Taylor/LST-Fc Feature Space Method to Estimate Evapotranspiration: Case Study in an Arid/Semiarid Region in Northwest China. Remote Sens. 2015, 7, 447–466. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Li, Z.L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res.-Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.L.; Li, Z.L.; Chen, K.S.; Jia, Y.Y.; Li, C.R.; Sun, X.M. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agric. For. Meteorol. 2013, 174, 28–42. [Google Scholar] [CrossRef]
Input Variables | Products Name | Temporal Resolution | Spatial Resolution |
---|---|---|---|
Land Cover Types | MCD12Q1 | Yearly | 500 m |
LST | MOD11A1 & MYD11A1 | Daily | 1 km |
NDVI | MOD13A2 & MYD13A2 | 8 days | 1 km |
Albedo | GLASS | 8 days | 1 km |
LAI | GLASS | 8 days | 1 km |
Precipitation | CMORPH | Daily | 0.25° |
Soil Moisture | ESA CCI | Daily | 0.25° |
Site ID | Description | Lat (°N) | Lon (°E) | Period | Reference |
---|---|---|---|---|---|
ctt007 | Cassava field at Tak | 16.90 | 99.43 | 2012–2015 | [26] |
dtt030 | Diverse land surface at Tak | 16.94 | 99.43 | 2003–2015 | [26] |
prt007 | Paddy at Rachaburi | 13.58 | 99.51 | 2011–2013 | [26] |
pst007 | Paddy at Sukhothai | 17.06 | 99.70 | 2004–2009 | [26] |
MKL | Forest at Sakaerat | 14.59 | 98.84 | 2003–2004 | [4] |
SKR | Forest at Mae Klong | 14.49 | 101.92 | 2001–2003 | [4] |
Site ID | ETMonitor by Hu and Jia (2015) | Current Study Estimation | ||||
---|---|---|---|---|---|---|
R | Bias (mm d−1) | RMSE (mm d−1) | R | Bias (mm d−1) | RMSE (mm d−1) | |
ctt007 | 0.48 | 0.02 | 1.06 | 0.37 | 0.43 | 1.27 |
dtt030 | 0.62 (0.45) | −1.70 (−0.77) | 1.95 (1.25) | 0.47 | −0.3 | 1.12 |
prt007 | 0.45 | −0.37 | 1.21 | 0.46 | −0.44 | 1.16 |
pst007 | 0.51 | −0.33 | 1.12 | 0.53 | −0.26 | 1.08 |
MKL | −0.02 (0.00) | 1.59 (0.68) | 1.92 (1.16) | −0.06 | 0.65 | 1.16 |
SKR | 0.14 (0.07) | 1.67 (0.44) | 2.12 (1.39) | 0.13 | 0.89 | 1.58 |
Site ID | ETMonitor 8-Days ET | MOD16 8-Days ET | ||||
---|---|---|---|---|---|---|
R | Bias (mm d−1) | RMSE (mm d−1) | R | Bias (mm d−1) | RMSE (mm d−1) | |
ctt007 | 0.59 | 0.44 | 0.94 | 0.30 | 0.36 | 1.19 |
dtt030 | 0.59 | −0.31 | 0.92 | 0.50 | −0.09 | 0.98 |
prt007 | 0.65 | −0.37 | 0.82 | 0.23 | −0.03 | 0.99 |
pst007 | 0.63 | −0.45 | 0.97 | 0.59 | −0.55 | 1.12 |
MKL | 0.07 | 0.75 | 1.04 | 0.48 | 2.58 | 2.69 |
SKR | 0.30 | 0.78 | 1.20 | 0.42 | 1.82 | 1.99 |
Basin Area (× 103 km2) | Annual Precipitation (mm yr−1) | Annual ET (mm yr−1) | Cropland Coverage (%) | Forest Coverage (%) | |
---|---|---|---|---|---|
Chi river basin | 40.58 | 1269.52 | 938.80 | 82.16 | 5.56 |
Mun river basin | 71.06 | 1374.50 | 1023.70 | 87.45 | 6.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Jia, L.; Hu, G.; Lu, J. Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sens. 2019, 11, 138. https://doi.org/10.3390/rs11020138
Zheng C, Jia L, Hu G, Lu J. Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sensing. 2019; 11(2):138. https://doi.org/10.3390/rs11020138
Chicago/Turabian StyleZheng, Chaolei, Li Jia, Guangcheng Hu, and Jing Lu. 2019. "Earth Observations-Based Evapotranspiration in Northeastern Thailand" Remote Sensing 11, no. 2: 138. https://doi.org/10.3390/rs11020138
APA StyleZheng, C., Jia, L., Hu, G., & Lu, J. (2019). Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sensing, 11(2), 138. https://doi.org/10.3390/rs11020138