Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Eddy Detection Method
2.2.2. Definition of Cyclonic Warm-Core and Anticyclonic Cold-Core Eddies
3. Results
3.1. Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy Cases
3.2. Spatial Distribution Characteristics
3.3. General Characteristic of Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy
3.3.1. Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy Generation Time
3.3.2. Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy Survival Time
3.4. Inter-Annual and Seasonal Variation
3.5. The Regional Dependence
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A: Subregions in the North Pacific
Appendix B: Eddy Detection Scheme
References
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of non-linear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Morrow, R.; LeTraon, P.Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv. Space Res. 2012, 50, 1062–1076. [Google Scholar] [CrossRef]
- Frenger, I.; Münnich, M.; Gruber, N.; Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. 2016, 120, 7413–7449. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yu, W.; Yuan, Y.; Zhao, X.; Wang, F.; Chen, G.; Liu, L.; Duan, Y. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. J. Geophys. Res. 2015, 120, 6733–6750. [Google Scholar] [CrossRef] [Green Version]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. 2015, 120, 6008–6033. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.; Wang, W. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean. J. Geophys. Res. 2017, 122, 1653–1664. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; He, Y.; Huang, G.; Zhan, W. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. 2018, 123, 4906–4929. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Eddy-induced heat transport in the subtropical north pacific from Argo, TMI and altimetry measurements. J. Phys. Oceanogr. 2004, 68, 458–473. [Google Scholar] [CrossRef]
- Meijers, A.J.; Bindoff, N.L.; Roberts, J.L. On the total, mean, and eddy heat and freshwater transports in the southern hemisphere of a global ocean model. J. Phys. Oceanogr. 2007, 37, 277–295. [Google Scholar] [CrossRef]
- Chen, G.; Gan, J.; Xie, Q.; Chu, X.; Wang, D.; Hou, Y. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res. 2012, 117, 78–91. [Google Scholar] [CrossRef]
- Treguier, A.M.; Deshayes, J.; Lique, C.; Dussin, R.; Molines, J.M. Eddy contributions to the meridional transport of salt in the North Atlantic. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, L.; Qi, Y.; Han, G. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep Sea Res. 2012, 61, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Mcwilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, P.; Xie, S.P.; Liu, Q.; Liu, C.; Gao, W. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nat. Commun. 2015, 7, 10505. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jing, Z.; Chang, P.; Liu, X.; Montuoro, R.; Small, R.J.; Bryan, F.O.; Greatbatch, R.J.; Brandt, P.; Wu, D.; et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature 2016, 535, 533–537. [Google Scholar] [CrossRef]
- Kamidaira, Y.; Uchiyama, Y.; Mitarai, S. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea. Cont. Shelf Res. 2017, 143, 206–218. [Google Scholar] [CrossRef]
- Dong, D.; Brandt, P.; Chang, P.; Schütte, F.; Yang, X.; Yan, J.; Zeng, J. Mesoscale eddies in the Northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. J. Geophys. Res. 2017, 122, 9795–9813. [Google Scholar] [CrossRef]
- Nurser, A.; Zhang, J. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. 2000, 105, 21851–21868. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.P.; Richards, K.J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Res. 2001, 48, 757–773. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G.; Gille, S.T.; Hewes, C.D.; Holm Hansen, O. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean. Geophys. Res. Lett. 2007, 34, 116–130. [Google Scholar] [CrossRef]
- Klein, P.; Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Ann. Rev. Mar. Sci. 2009, 1, 351–375. [Google Scholar] [CrossRef] [PubMed]
- Kouketsu, S.; Tomita, H.; Oka, E.; Hosoda, S.; Kobayashi, T.; Sato, K. The role of mesoscale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr. 2012, 68, 63–77. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, H.; Chai, F.; Ni, Q. Dynamical processes within an anticyclonic eddy revealed from Argo floats. Geophys. Res. Lett. 2015, 42, 2342–2350. [Google Scholar] [CrossRef] [Green Version]
- Luneva, M.V.; Clayson, C.A.; Dubovikov, M.S. Effects of mesoscale eddies in the active mixed layer: Test of the parametrisation in eddy resolving simulations. Geophys. Astrophys. Fluid Dyn. 2015, 109, 1–30. [Google Scholar] [CrossRef]
- Bracco, A.; Clayton, S.; Pasquero, C. Horizontal advection, diffusion, and plankton spectra at the sea surface. J. Geophys. Res. 2009, 114, C02001. [Google Scholar] [CrossRef]
- Gruber, N.; Lachkar, Z.; Frenzel, H.; Marchesiello, P.; Münnich, M.; McWilliams, J.C.; Nagai, T.; Plattner, G. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 2011, 4, 787–792. [Google Scholar] [CrossRef]
- Chelton, D.B.; Peter, G.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Mahadevan, A.; Asaro, E.D.; Lee, C.; Perry, M.J. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 2012, 337, 54–58. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 2013, 118, 6349–6370. [Google Scholar] [CrossRef] [Green Version]
- Dufour, C.O.; Griffies, S.M.; de Souza, G.F.; Frenger, I.; Morrison, A.K.; Palter, J.B.; Sarmiento, J.L.; Galbraith, E.D.; Dunne, J.P.; Anderson, W.G. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 2015, 45, 3057–3081. [Google Scholar] [CrossRef]
- Mahadevan, A. The impact of submesoscale physical on primary productivity of plankton. Ann. Rev. Mar. Sci. 2016, 8, 161–184. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, D.J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed]
- Brannigan, L. Intense submesoscale upwelling in anticyclonic eddies. Geophys. Res. Lett. 2016, 43, 3360–3369. [Google Scholar] [CrossRef] [Green Version]
- Frenger, I.; Münnich, M.; Gruber, N. Imprint of Southern Ocean eddies on chlorophyll. Biogeosciences 2018, 15, 4781–4798. [Google Scholar] [CrossRef]
- Lu, J.; Speer, K. Topography, jets, and eddy mixing in the Southern Ocean. J. Mar. Res. 2010, 68, 479–502. [Google Scholar] [CrossRef]
- Beron-Vera, F.J.; Olascoaga, M.J.; Goni, G.J. Surface ocean mixing inferred from different multisatellite altimetry measurements. J. Phys. Oceanogr. 2010, 40, 2466–2480. [Google Scholar] [CrossRef]
- Peterson, T.D.; Crawford, D.W.; Harrison, P.J. Mixing and biological production at eddy margins in the eastern Gulf of Alaska. Deep Sea Res. 2011, 58, 377–389. [Google Scholar] [CrossRef]
- Brearley, J.A.; Sheen, K.L.; Garabato, A.C.N.; Smeed, D.A.; Waterman, S. Eddy-induced modulation of turbulent mixing over rough topography in the Southern Ocean. J. Phys. Oceanogr. 2013, 43, 2288–2308. [Google Scholar] [CrossRef]
- Stanley, G.J.; Saenko, O.A. Bottom-enhanced diapycnal mixing driven by mesoscale eddies: Sensitivity to wind energy supply. J. Phys. Oceanogr. 2014, 44, 68–85. [Google Scholar] [CrossRef]
- Sheen, K.L.; Garabato, A.C.N.; Brearley, J.A.; Meredith, M.P.; Polzin, K.L.; Smeed, D.A.; Forryan, A.; King, B.A.; Sallée, J.B.; Laurent, L.S. Eddy-induced variability in Southern Ocean abyssal mixing on climatic timescales. Nat. Geosci. 2014, 7, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Z.; Zhao, Y.; Li, J.; Liang, X. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea. Deep Sea Res. 2015, 122, 6–14. [Google Scholar] [CrossRef]
- Lu, J.; Wang, F.; Liu, H.; Lin, P. Stationary mesoscale eddies, up-gradient eddy fluxes and the anisotropy of eddy diffusivity. Geophys. Res. Lett. 2016, 43, 743–751. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, C.; Liu, X.; Dong, J. Antisymmetry of oceanic eddies across the Kuroshio over a shelfbreak. Sci. Rep. 2017, 7, 6761. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Liang, X.; Dong, J.; Tian, J. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J. Phys. Oceanogr. 2017, 47, 895–907. [Google Scholar] [CrossRef]
- Wunsch, C.; Ferrari, R. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 2004, 36, 281–314. [Google Scholar] [CrossRef]
- Chelton, D.B.; Xie, S.P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanogr. Mag. 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Cardona, Y.; Bracco, A. Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea. Ocean Model. 2012, 42, 1–15. [Google Scholar] [CrossRef]
- Chelton, D.B. Ocean–atmosphere coupling: Mesoscale eddy effects. Nat. Geosci. 2013, 6, 594–595. [Google Scholar] [CrossRef]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of southern ocean eddies on winds clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Lin, P.; Liu, Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension based on composite analyses. J. Geophys. Res. 2015, 120, 6313–6330. [Google Scholar] [CrossRef]
- McGillicuddy Jr, D.J. Formation of intrathermocline lenses by eddy–wind interaction. J. Phys. Oceanogr. 2015, 45, 606–612. [Google Scholar] [CrossRef]
- Yasuda, I.; Ito, S.I.; Shimizu, Y.; Ichikawa, K.; Ueda, K.I.; Honma, T.; Uchiyama, M.; Watanabe, K.; Sunou, N.; Tanaka, K. Cold-core anticyclonic eddies south of the Bussol’ Strait in the northwestern subarctic Pacific. J. Phys. Oceanogr. 1999, 30, 1137–1157. [Google Scholar] [CrossRef]
- Rogachev, K.A. Recent variability in the Pacific western subarctic boundary currents and Sea of Okhotsk. Prog. Oceanogr. 2000, 47, 299–336. [Google Scholar] [CrossRef]
- Mathis, J.T.; Pickart, R.S.; Hansell, D.A.; Kadko, D.; Bates, N.R. Eddy transport of organic carbon and nutrients from the Chukchi shelf: Impact on the upper halocline of the western Arctic Ocean. J. Geophys. Res. 2007, 112, C05011. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the Subarctic North Pacific. J. Phys. Oceanogr. 2010, 40, 2624–2642. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I. Characteristics of mesoscale eddies in the Kuroshio—Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr. 2010, 40, 1018–1034. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yasuda, I.; Ito, S.I. Distribution and circulation of the coastal Oyashio intrusion. J. Phys. Oceanogr. 2001, 31, 1561–1578. [Google Scholar] [CrossRef]
- Ji, J.; Dong, C.; Zhang, B.; Liu, Y. Oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension Region. Acta Oceanol. Sin. 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Martin, A.P.; Wade, I.P.; Richards, K.J.; Heywood, K.J. The PRIME eddy. J. Mar. Res. 1998, 56, 439–462. [Google Scholar] [CrossRef]
- Rabinovich, A.B.; Thomson, R.E.; Bograd, S.J. Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands. J. Oceanogr. 2002, 58, 661–671. [Google Scholar] [CrossRef]
- Pickart, R.S.; Weingartner, T.J.; Pratt, L.J.; Zimmermann, S.; Torres, D.J. Flow of winter-transformed Pacific water into the western Arctic. Deep Sea Res. 2005, 52, 3175–3198. [Google Scholar] [CrossRef]
- Spall, M.A.; Pickart, R.S.; Fratantoni, P.S.; Plueddemann, A.J. Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr. 2008, 38, 1644–1668. [Google Scholar] [CrossRef]
- Kadko, D.; Pickart, R.S.; Mathis, J. Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. J. Geophys. Res. 2008, 113, C02018. [Google Scholar] [CrossRef]
- Qiu, B. Kuroshio Extension variability and forcing of the Pacific Decadal Oscillations: Responses and potential feedback. J. Phys. Oceanogr. 2003, 33, 2465–2482. [Google Scholar] [CrossRef]
- Liang, J.H.; McWilliams, J.C.; Kurian, J.; Colas, F.; Wang, P.; Uchiyama, Y. Mesoscale variability in the northeastern tropical Pacific: Forcing mechanisms and eddy properties. J. Geophys. Res. 2012, 117, C07003. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Ho, C.R.; Zheng, Q.; Kuo, N.J. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sens. 2014, 6, 5164–5183. [Google Scholar] [CrossRef]
- Pujol, M.I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Michael, G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; Mcwilliams, J.C. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Okubo, A. Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D 1991, 48, 273–294. [Google Scholar] [CrossRef]
- Sadarjoen, I.A.; Post, F.H. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graph. 2000, 24, 333–341. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, C.; Guan, Y.; Chen, D.; Mcwilliams, J.C.; Nencioli, F. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Res. 2012, 68, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Couvelard, X.; Caldeira, R.M.A.; Araújo, I.B.; Tomé, R. Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study. Dyn. Atmos. Oceans 2012, 58, 128–149. [Google Scholar] [CrossRef]
- Peliz, A.; Boutov, D.; Teles-Machado, A. The Alboran Sea mesoscale in a long term high resolution simulation: Statistical analysis. Ocean Model. 2013, 72, 32–52. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Res. 2015, 99, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Dong, C.; Wang, R.; Liu, Y.; Yu, K. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. 2017, 122, 1476–1496. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Tan, W.; Liu, Y.; He, Y.; Wang, J. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sens. 2018, 10, 795. [Google Scholar] [CrossRef]
- Doglioli, A.M.; Blanke, B.; Speich, S.; Lapeyre, G. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res. 2007, 112, C05043. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
Variable Season | Polarity | Number (Per Season) | |
---|---|---|---|
Spring (March, April, May) | CWE | 2544.2 ± 329.5 (1919, 3030) | 7.45 ± 0.97 (5.78, 8.92) |
ACE | 3672.0 ± 311.6 (3095, 4573) | 10.29 ± 0.87 (9.09, 12.43) | |
Summer (June, July, August) | CWE | 3818.6 ± 357.8 (3263, 4404) | 11.43 ± 1.11 (9.77, 13.07) |
ACE | 5029.4 ± 480.1 (4157, 5886) | 14.37 ± 1.23 (12.34, 16.83) | |
Autumn (September, October, November) | CWE | 2678.2 ± 365.8 (2048, 3185) | 8.87 ± 1.15 (7.05, 10.69) |
ACE | 3867.2 ± 349.5 (3063, 4702) | 12.47 ± 1.17 (9.67, 15.48) | |
Winter (December, January, February) | CWE | 1896.6 ± 311.6 (1158, 2391) | 6.28 ± 0.87 (4.53, 7.74) |
ACE | 2231.4 ± 275.9 (1583, 2712) | 7.39 ± 0.80 (6.02, 8.66) |
Character Region # | Type | Radius (km) | (°C) | Amplitude (cm) | EKE (cm2 s−2) |
---|---|---|---|---|---|
OC | CWE | 55.5 ± 22.9 (25.0, 120.2) | 0.18 ± 0.07 (0.10, 0.37) | 6.6 ± 3.7 (0.3, 16.9) | 38.6 ± 25.5 (0.8, 107.2) |
ACE | 45.4 ± 14.9 (25.0, 84.8) | −0.18 ± 0.07 (−0.10, −0.37) | 17.5 ± 9.8 (0.2, 43.3) | 99.2 ± 63.8 (25.9, 276.3) | |
AC | CWE | 56.6 ± 23.5 (25.0, 122.7) | 0.16 ± 0.05 (0.10, 0.31) | 4.7 ± 2.6 (0.2, 11.8) | 13.1 ± 7.6 (3.9, 33.7) |
ACE | 48.5 ± 16.4 (25.0, 90.7) | −0.17 ± 0.06 (−0.10, −0.34) | 14.3 ± 9.5 (0.2, 40.9) | 59.3 ± 53.6 (10.1, 199.4) | |
CC | CWE | 69.2 ± 28.2 (25.0, 149.5) | 0.17 ± 0.06 (0.10, 0.34) | 6.1 ± 3.5 (0.2, 16.3) | 65.9 ± 45.2 (1.4, 188.8) |
ACE | 72.3 ± 29.1 (25.0, 158.8) | −0.17 ± 0.06 (−0.10, −0.33) | 10.3 ± 5.2 (0.2, 24.6) | 51.8 ± 32.3 (1.5, 141.5) | |
KE | CWE | 72.5 ± 30.7 (25.0, 162.8) | 0.21 ± 0.09 (0.10, 0.44) | 20.4 ± 12.8 (0.4, 54.7) | 334.1 ± 167.8 (140.5, 791.3) |
ACE | 72.3 ± 27.9 (25.0, 151.2) | −0.21 ± 0.09 (−0.10, −0.45) | 30.1 ± 17.2 (0.3, 77.6) | 248.2 ± 124.9 (94.7, 585.3) | |
STCC | CWE | 84.5 ± 34.7 (25.0, 183.9) | 0.16 ± 0.05 (0.10, 0.29) | 11.8 ± 6.6 (0.2, 30.4) | 137.4 ± 80.6 (8.4, 351.8) |
ACE | 80.1 ± 29.6 (25.0, 163.9) | −0.16 ± 0.05 (−0.10, −0.28) | 17.3 ± 8.1 (0.3, 39.8) | 161.6 ± 92.8 (2.9, 416.2) | |
NETP | CWE | 82.5 ± 33.5 (25.0, 180.5) | 0.17 ± 0.06 (0.10, 0.32) | 8.8 ± 5.1 (0.2, 23.3) | 142.5 ± 92.8 (1.8, 396.7) |
ACE | 87.3 ± 33.6 (25.0, 184.1) | −0.17 ± 0.05 (−0.10, −0.32) | 17.7 ± 10.7 (0.2, 46.9) | 230.5 ± 168.3 (42.0, 685.9) | |
NEC | CWE | 88.2 ± 33.7 (25.0, 186.2) | 0.15 ± 0.04 (0.10, 0.23) | 8.4 ± 5.4 (0.2, 23.5) | 106.5 ± 65.7 (11.0, 285.5) |
ACE | 87.9 ± 33.8 (25.1, 186.9) | −0.16 ± 0.05 (−0.10, −0.28) | 11.8 ± 6.1 (0.3, 29.1) | 78.6 ± 40.8 (26.0, 188.2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Dong, C.; Tan, W.; He, Y. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sens. 2019, 11, 208. https://doi.org/10.3390/rs11020208
Sun W, Dong C, Tan W, He Y. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sensing. 2019; 11(2):208. https://doi.org/10.3390/rs11020208
Chicago/Turabian StyleSun, Wenjin, Changming Dong, Wei Tan, and Yijun He. 2019. "Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data" Remote Sensing 11, no. 2: 208. https://doi.org/10.3390/rs11020208
APA StyleSun, W., Dong, C., Tan, W., & He, Y. (2019). Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sensing, 11(2), 208. https://doi.org/10.3390/rs11020208