Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment
Abstract
:1. Introduction
Proposed Approach
2. Materials and Methods
2.1. Generating the LCZ Dissimilarity Metric
- sky view factor (SV), i.e., fraction of sky hemisphere visible from ground level;
- aspect ratio (AR), i.e., average height-to-width ratio of street canyons/building spacing/tree spacing;
- mean building/tree height (H);
- terrain roughness class (TR), based on Davenport et al.’s [19] terrain roughness classification scheme;
- building surface fraction (BF);
- impervious surface fraction (IF);
- surface admittance (SA), i.e., capacity of surface to accept or release heat;
- surface albedo (A); and
- anthropogenic heat flux (AH).
ǀIFi − IFjǀ + ǀSAi − SAjǀ + ǀAi − Ajǀ + ǀAHi − AHjǀ)/9,
2.2. Using the LCZ Dissimilarity Metric to Weight the Traditional Error Matrix
3. Results and Discussion
3.1. Comparison of Our LCZ Dissimilarity Metric with a Reference and the Traditional Error Metric
3.2. Demonstration of Proposed Approach Using a Synthetic Dataset
3.3. Potential, Limitations, and Alternative Implementations of Proposed Approach
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
LCZ Type | SV | AR | H | TR | BF | IF | SA | A | AH |
---|---|---|---|---|---|---|---|---|---|
1 | 0.133 | 1.000 | 1.000 | 1.000 | 0.643 | 0.500 | 0.789 | 0.000 | 1.000 |
2 | 0.333 | 0.541 | 0.467 | 0.786 | 0.714 | 0.389 | 1.000 | 0.000 | 0.214 |
3 | 0.267 | 0.439 | 0.173 | 0.714 | 0.714 | 0.333 | 0.632 | 0.000 | 0.214 |
4 | 0.533 | 0.592 | 1.000 | 0.929 | 0.357 | 0.333 | 0.737 | 0.078 | 0.143 |
5 | 0.600 | 0.194 | 0.467 | 0.643 | 0.357 | 0.389 | 0.842 | 0.078 | 0.071 |
6 | 0.733 | 0.194 | 0.173 | 0.643 | 0.357 | 0.333 | 0.632 | 0.078 | 0.071 |
7 | 0.200 | 0.592 | 0.080 | 0.500 | 1.000 | 0.056 | 0.368 | 0.222 | 0.100 |
8 | 0.867 | 0.061 | 0.173 | 0.571 | 0.500 | 0.556 | 0.632 | 0.111 | 0.143 |
9 | 0.933 | 0.051 | 0.173 | 0.643 | 0.143 | 0.056 | 0.526 | 0.078 | 0.029 |
10 | 0.733 | 0.122 | 0.200 | 0.643 | 0.286 | 0.278 | 0.895 | 0.022 | 0.857 |
A | 0.000 | 0.796 | 0.440 | 1.000 | 0.000 | 0.000 | n/a | 0.000 | 0.000 |
B | 0.600 | 0.184 | 0.240 | 0.643 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 |
C | 0.867 | 0.235 | 0.027 | 0.500 | 0.000 | 0.000 | 0.211 | 0.167 | 0.000 |
D | 1.000 | 0.000 | 0.013 | 0.357 | 0.000 | 0.000 | 0.526 | 0.111 | 0.000 |
E | 1.000 | 0.000 | 0.003 | 0.071 | 0.000 | 1.000 | 1.000 | 0.167 | 0.000 |
F | 1.000 | 0.000 | 0.003 | 0.071 | 0.000 | 0.000 | 0.105 | 0.278 | 0.000 |
G | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.632 | 1.000 | 0.000 |
References
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the “local climate zone” scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Wang, R.; Cai, M.; Ren, C.; Bechtel, B.; Xu, Y.; Ng, E. Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Clim. 2019, 28, 100455. [Google Scholar] [CrossRef]
- Wang, R.; Ren, C.; Xu, Y.; Lau, K.K.L.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Perera, N.G.R.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.L.; Ren, C.; Ng, E. Evaluating the local climate zone classification in high-density heterogeneous urban environment using mobile measurement. Urban Clim. 2018, 25, 167–186. [Google Scholar] [CrossRef]
- Qiu, C.; Schmitt, M.; Mou, L.; Ghamisi, P.; Zhu, X.X. Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets. Remote Sens. 2018, 10, 1572. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Currit, N.; Weaver, R. Application of airborne remote sensing data on mapping local climate zones: Cases of three metropolitan areas of Texas, U.S. Comput. Environ. Urban Syst. 2019, 74, 175–193. [Google Scholar] [CrossRef]
- Fonte, C.C.; Lopes, P.; See, L.; Bechtel, B. Urban Climate Using OpenStreetMap (OSM) to enhance the classification of local climate zones in the framework of WUDAPT. Urban Clim. 2019, 28, 100456. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing—A Remote Sensing Perspective, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Congalton, R.G. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Johnson, B.A.; Endo, I.; Onishi, A.; Bragais, M.; Magcale-Macandog, D.B. A Land cover map accuracy metric for hydrological studies. In Proceedings of the 16th World Lake Conference; Maghfiroh, M., Dianto, A., Jasalesmana, T., Melati, I., Samir, O., Kurniawan, R., Eds.; Research Center for Limnology, Indonesian Institute of Sciences: Bali, Indonesia, 2017; pp. 191–195. [Google Scholar]
- Bechtel, B.; Demuzere, M.; Sismanidis, P.; Fenner, D.; Brousse, O.; Beck, C.; Van Coillie, F.; Conrad, O.; Keramitsoglou, I.; Middel, A.; et al. Quality of Crowdsourced Data on Urban Morphology—The Human Influence Experiment (HUMINEX). Urban Sci. 2017, 1, 15. [Google Scholar] [CrossRef]
- Davenport, A.G.; Grimmond, C.S.B.; Oke, T.R.; Wieringa, J. Estimating the roughness of cities and sheltered country. In Proceedings of the 12th Conference on Applied Climatology; American Meteorological Society, Boston: Asheville, NC, USA, 2000; pp. 96–99. [Google Scholar]
- Brousse, O.; Martilli, A.; Foley, M.; Mills, G.; Bechtel, B. WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 2016, 17, 116–134. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann: Burlington, VT, USA, 2011; Volume 31. [Google Scholar]
- Gautam, S.; Li, Y.; Johnson, T.G. Do alternative spatial healthcare access measures tell the same story? GeoJournal 2014, 79, 223–235. [Google Scholar] [CrossRef]
- Johnson, B.A.; Scheyvens, H.; Shivakoti, B.R. An ensemble pansharpening approach for finer-scale mapping of sugarcane with Landsat 8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 218–225. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Xiao, P.; He, G.; Zhu, L. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens. 2015, 102, 73–84. [Google Scholar] [CrossRef]
- Johnson, B.A.; Bragais, M.; Endo, I.; Magcale-Macandog, D.B.; Macandog, P.B.M. Image Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery. ISPRS Int. J. Geo Inf. 2015, 4, 2292–2305. [Google Scholar] [CrossRef] [Green Version]
- Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy assessment measures for object-based image segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Amro, I.; Mateos, J.; Vega, M.; Molina, R.; Katsaggelos, A.K. A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011, 79, 1–22. [Google Scholar] [CrossRef]
LCZ Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.29 | 0.33 | 0.26 | 0.40 | 0.47 | 0.47 | 0.47 | 0.58 | 0.39 | 0.38 | 0.60 | 0.65 | 0.67 | 0.70 | 0.77 | 0.80 | |
2 | 0.29 | 0.11 | 0.19 | 0.17 | 0.24 | 0.27 | 0.27 | 0.35 | 0.28 | 0.27 | 0.38 | 0.43 | 0.44 | 0.45 | 0.54 | 0.57 | |
3 | 0.33 | 0.11 | 0.23 | 0.20 | 0.15 | 0.19 | 0.19 | 0.26 | 0.25 | 0.30 | 0.30 | 0.33 | 0.35 | 0.46 | 0.45 | 0.48 | |
4 | 0.26 | 0.19 | 0.23 | 0.17 | 0.21 | 0.35 | 0.28 | 0.32 | 0.31 | 0.28 | 0.35 | 0.39 | 0.41 | 0.49 | 0.51 | 0.54 | |
5 | 0.40 | 0.17 | 0.20 | 0.17 | 0.08 | 0.33 | 0.15 | 0.19 | 0.17 | 0.31 | 0.21 | 0.27 | 0.28 | 0.32 | 0.38 | 0.41 | |
6 | 0.47 | 0.24 | 0.15 | 0.21 | 0.08 | 0.28 | 0.09 | 0.11 | 0.15 | 0.35 | 0.18 | 0.19 | 0.20 | 0.31 | 0.30 | 0.33 | |
7 | 0.47 | 0.27 | 0.19 | 0.35 | 0.33 | 0.28 | 0.31 | 0.30 | 0.41 | 0.33 | 0.31 | 0.27 | 0.34 | 0.51 | 0.37 | 0.46 | |
8 | 0.47 | 0.27 | 0.19 | 0.28 | 0.15 | 0.09 | 0.31 | 0.14 | 0.21 | 0.45 | 0.26 | 0.23 | 0.21 | 0.26 | 0.31 | 0.34 | |
9 | 0.58 | 0.35 | 0.26 | 0.32 | 0.19 | 0.11 | 0.30 | 0.14 | 0.21 | 0.33 | 0.15 | 0.13 | 0.09 | 0.28 | 0.19 | 0.24 | |
10 | 0.39 | 0.28 | 0.25 | 0.31 | 0.17 | 0.15 | 0.41 | 0.21 | 0.21 | 0.43 | 0.29 | 0.31 | 0.30 | 0.36 | 0.40 | 0.43 | |
A | 0.38 | 0.27 | 0.30 | 0.28 | 0.31 | 0.35 | 0.33 | 0.45 | 0.33 | 0.43 | 0.24 | 0.31 | 0.37 | 0.54 | 0.43 | 0.53 | |
B | 0.60 | 0.38 | 0.30 | 0.35 | 0.21 | 0.18 | 0.31 | 0.26 | 0.15 | 0.29 | 0.24 | 0.10 | 0.18 | 0.38 | 0.18 | 0.33 | |
C | 0.65 | 0.43 | 0.33 | 0.39 | 0.27 | 0.19 | 0.27 | 0.23 | 0.13 | 0.31 | 0.31 | 0.10 | 0.10 | 0.29 | 0.12 | 0.24 | |
D | 0.67 | 0.44 | 0.35 | 0.41 | 0.28 | 0.20 | 0.34 | 0.21 | 0.09 | 0.30 | 0.37 | 0.18 | 0.10 | 0.20 | 0.10 | 0.15 | |
E | 0.70 | 0.45 | 0.46 | 0.49 | 0.32 | 0.31 | 0.51 | 0.26 | 0.28 | 0.36 | 0.54 | 0.38 | 0.29 | 0.20 | 0.22 | 0.25 | |
F | 0.77 | 0.54 | 0.45 | 0.51 | 0.38 | 0.30 | 0.37 | 0.31 | 0.19 | 0.40 | 0.43 | 0.18 | 0.12 | 0.10 | 0.22 | 0.15 | |
G | 0.80 | 0.57 | 0.48 | 0.54 | 0.41 | 0.33 | 0.46 | 0.34 | 0.24 | 0.43 | 0.53 | 0.33 | 0.24 | 0.15 | 0.25 | 0.15 |
LCZ Type | Reference Data | Sum | UA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 6 | 8 | 9 | A | B | D | F | G | |||
1 | 18 | 1 | 0 | 27 | 25 | 0 | 11 | 0 | 0 | 0 | 2 | 0 | 84 | 0.21 |
2 | 8 | 11 | 4 | 52 | 7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 84 | 0.13 |
3 | 0 | 3 | 193 | 15 | 101 | 61 | 33 | 0 | 2 | 4 | 78 | 0 | 490 | 0.39 |
4 | 7 | 0 | 0 | 18 | 31 | 0 | 47 | 0 | 10 | 0 | 6 | 0 | 119 | 0.15 |
6 | 20 | 0 | 19 | 123 | 193 | 5 | 226 | 0 | 8 | 4 | 17 | 0 | 615 | 0.31 |
8 | 28 | 26 | 26 | 45 | 376 | 30 | 34 | 0 | 3 | 4 | 13 | 0 | 585 | 0.05 |
9 | 0 | 0 | 0 | 4 | 89 | 1 | 65 | 3 | 5 | 85 | 5 | 0 | 257 | 0.25 |
A | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1682 | 0 | 4 | 0 | 0 | 1688 | 1.00 |
B | 1 | 1 | 0 | 9 | 33 | 0 | 48 | 14 | 5 | 76 | 12 | 0 | 199 | 0.03 |
D | 0 | 0 | 0 | 0 | 175 | 0 | 15 | 3 | 0 | 592 | 18 | 4 | 807 | 0.73 |
F | 1 | 0 | 12 | 3 | 171 | 14 | 20 | 0 | 0 | 48 | 26 | 0 | 295 | 0.09 |
G | 0 | 0 | 0 | 1 | 10 | 0 | 3 | 0 | 0 | 0 | 0 | 4855 | 4869 | 1.00 |
Sum | 83 | 42 | 254 | 297 | 1213 | 113 | 502 | 1702 | 33 | 817 | 177 | 4859 | 10,092 | |
PA | 0.22 | 0.26 | 0.76 | 0.06 | 0.16 | 0.27 | 0.13 | 0.99 | 0.15 | 0.72 | 0.15 | 1.00 | ||
OA = 0.76 |
LCZ Type | Reference Data | Sum | wUA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 6 | 8 | 9 | A | B | D | F | G | |||
1 | 18.00 | 0.29 | 0.00 | 6.96 | 10.05 | 0.00 | 5.20 | 0.00 | 0.00 | 0.00 | 1.40 | 0.00 | 41.90 | 0.43 |
2 | 2.30 | 11.00 | 0.43 | 10.12 | 1.16 | 0.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 25.55 | 0.43 |
3 | 0.00 | 0.32 | 193.00 | 3.45 | 20.05 | 11.46 | 6.38 | 0.00 | 0.61 | 1.34 | 35.67 | 0.00 | 272.28 | 0.71 |
4 | 1.80 | 0.00 | 0.00 | 18.00 | 5.22 | 0.00 | 13.32 | 0.00 | 2.85 | 0.00 | 2.95 | 0.00 | 44.15 | 0.41 |
6 | 8.04 | 0.00 | 3.77 | 20.72 | 193.00 | 1.64 | 34.88 | 0.00 | 2.48 | 1.08 | 5.51 | 0.00 | 271.11 | 0.71 |
8 | 13.19 | 7.06 | 4.88 | 15.79 | 123.26 | 30.00 | 10.50 | 0.00 | 0.99 | 1.09 | 6.69 | 0.00 | 213.45 | 0.14 |
9 | 0.00 | 0.00 | 0.00 | 1.13 | 13.73 | 0.31 | 65.00 | 0.62 | 2.25 | 19.52 | 1.32 | 0.00 | 103.89 | 0.63 |
A | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 1682.00 | 0.00 | 1.25 | 0.00 | 0.00 | 1683.59 | 1.00 |
B | 0.38 | 0.27 | 0.00 | 2.56 | 10.23 | 0.00 | 21.64 | 6.03 | 5.00 | 23.82 | 6.49 | 0.00 | 76.43 | 0.07 |
D | 0.00 | 0.00 | 0.00 | 0.00 | 47.22 | 0.00 | 3.44 | 0.94 | 0.00 | 592.00 | 5.22 | 0.46 | 649.28 | 0.91 |
F | 0.70 | 0.00 | 5.49 | 1.48 | 55.39 | 7.20 | 5.28 | 0.00 | 0.00 | 13.92 | 26.00 | 0.00 | 115.45 | 0.23 |
G | 0.00 | 0.00 | 0.00 | 0.51 | 3.76 | 0.00 | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 | 4855.00 | 4860.19 | 1.00 |
Sum | 44.42 | 18.93 | 207.57 | 80.73 | 483.42 | 51.15 | 166.55 | 1689.59 | 14.19 | 654.02 | 91.25 | 4855.46 | 8357.27 | |
wPA | 0.41 | 0.58 | 0.93 | 0.22 | 0.40 | 0.59 | 0.39 | 1.00 | 0.35 | 0.91 | 0.28 | 1.00 | ||
wOA = 0.92 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, B.A.; Jozdani, S.E. Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment. Remote Sens. 2019, 11, 2420. https://doi.org/10.3390/rs11202420
Johnson BA, Jozdani SE. Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment. Remote Sensing. 2019; 11(20):2420. https://doi.org/10.3390/rs11202420
Chicago/Turabian StyleJohnson, Brian Alan, and Shahab Eddin Jozdani. 2019. "Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment" Remote Sensing 11, no. 20: 2420. https://doi.org/10.3390/rs11202420
APA StyleJohnson, B. A., & Jozdani, S. E. (2019). Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment. Remote Sensing, 11(20), 2420. https://doi.org/10.3390/rs11202420