Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Meteorology Data
2.2. GNSS ZTD and IWV
2.3. MODIS- and Radiosonde-Derived IWV
3. Results
3.1. Analysis of GNSS-Derived ZTD
3.2. Meteorological Conditions
3.3. MODIS- Versus GNSS-Derived IWV
3.4. Radiosonde- Versus GNSS-Derived IWV
3.5. Space and Temporal Distributions of GNSS IWV in Rio de Janeiro
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787. [Google Scholar] [CrossRef]
- Bock, O.; Bosser, P.; Pacione, R.; Nuret, M.; Fourrié, N.; Parracho, A. A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period. Q. J. R. Meteorol. Soc. 2016, 142, 56–71. [Google Scholar] [CrossRef]
- Deblonde, G.; Macpherson, S.; Mireault, Y.; Héroux, P. Evaluation of GPS Precipitable Water over Canada and the IGS Network. J. Appl. Meteorol. 2005, 44, 153–166. [Google Scholar] [CrossRef]
- Mattioli, V.; Westwater, E.R.; Cimini, D.; Liljegren, J.C.; Lesht, B.M.; Gutman, S.I.; Schmidlin, F.J. Analysis of Radiosonde and Ground-Based Remotely Sensed PWV Data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Ocean. Technol. 2007, 24, 415–431. [Google Scholar] [CrossRef]
- Liou, Y.A.; Teng, Y.T.; Van Hove, T.; Liljegren, J.C. Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes. J. Appl. Meteorol. 2001, 40, 5–15. [Google Scholar] [CrossRef]
- Rocken, C.; Van Hove, T.; Ware, R. Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett. 1997, 24, 3221–3224. [Google Scholar] [CrossRef]
- Song, S.; Zhu, W.; Ding, J.; Peng, J. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field. Chin. Sci. Bull. 2006, 51, 607–614. [Google Scholar] [CrossRef]
- Tregoning, P.; Boers, R.; O’Brien, D.; Hendy, M. Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res. Atmos. 1998, 103, 28701–28710. [Google Scholar] [CrossRef]
- Liu, Z.; Wong, M.S.; Nichol, J.; Chan, P.W. A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: A case study of Hong Kong. Int. J. Climatol. 2011, 33, 109–120. [Google Scholar] [CrossRef]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Cachorro, V.E.; Costa, M.J.; Román, R.; Bennouna, Y.S. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 214–221. [Google Scholar] [CrossRef]
- Adams, D.K.; Fernandes, R.M.S.; Kursinski, E.R.; Maia, J.M.; Sapucci, L.F.; Machado, L.A.T.; Vitorello, I.; Monico, J.F.G.; Holub, K.L.; Gutman, S.I.; et al. A dense GNSS meteorological network for observing deep convection in the Amazon. Atmos. Sci. Lett. 2011, 12, 207–212. [Google Scholar] [CrossRef]
- Adams, D.K.; Fernandes, R.M.S.; Maia, J.M.F. GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower. J. Atmos. Ocean. Technol. 2011, 28, 1192–1198. [Google Scholar] [CrossRef]
- Adams, D.K.; Gutman, S.I.; Holub, K.L.; Pereira, D.S. GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett. 2013, 40, 2818–2823. [Google Scholar] [CrossRef]
- Adams, D.K.; Fernandes, R.M.S.; Holub, K.L.; Gutman, S.I.; Barbosa, H.M.J.; Machado, L.A.T.; Calheiros, A.J.P.; Bennett, R.A.; Kursinski, E.R.; Sapucci, L.F.; et al. The Amazon Dense GNSS Meteorological Network: A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics. Bull. Am. Meteorol. Soc. 2015, 96, 2151–2165. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.T.; Monico, J.F.G.; Plana-Fattori, A. Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region. J. Atmos. Ocean. Technol. 2007, 24, 1880–1894. [Google Scholar] [CrossRef]
- Smith, T.L.; Benjamin, S.G.; Gutman, S.I.; Sahm, S. Short-Range Forecast Impact from Assimilation of GPS-IPW Observations into the Rapid Update Cycle. Mon. Weather Rev. 2007, 135, 2914–2930. [Google Scholar] [CrossRef]
- Bianchi, C.E.; Mendoza, L.P.O.; Fernández, L.I.; Natali, M.P.; Meza, A.M.; Moirano, J.F. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies. Ann. Geophys. 2016, 34, 623–639. [Google Scholar] [CrossRef]
- Monico, J.F.G. GNSS: Investigações e Aplicações no Posicionamento Geodésico, em Estudos Relacionados com a Atmosfera e na Agricultura de Precisão; Projeto FAPESP na Modalidade Temático; Universidade Estadual Paulista: São Paulo, Brazil, 2006. [Google Scholar]
- Sapucci, L.F.; Herdies, D.L.; Souza, R.V.A.D.; Mattos, J.G.Z.D.; Aravéquia, J.A. Os últimos avanços na previsibilidade dos campos de umidade no sistema global de assimilação de dados e previsão numérica de tempo do CPTEC/INPE. Rev. Bras. Meteorol. 2010, 25, 295–310. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Bastarz, C.F.; Cerqueira, F.; Avanço, L.A.; Herdies, D.L. Impacto de perfis de rádio ocultação GNSS na qualidade das Previsões de tempo do CPTEC/INPE. Rev. Bras. Meteorol. 2014, 29, 551–567. [Google Scholar] [CrossRef]
- Gendt, G.; Dick, G.; Reigber, C.; Tomassini, M.; Liu, Y.; Ramatschi, M. Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 361–370. [Google Scholar] [CrossRef]
- Song, S.; Zhu, W.; Chen, Q.; Liou, Y. Establishment of a new tropospheric delay correction model over China area. Sci. China Phys. Mech. Astron. 2011, 54, 2271–2283. [Google Scholar] [CrossRef]
- Song, S.L.; Zhu, W.Y.; Ding, J.C.; Liao, X.H.; Cheng, Z.Y.; Ye, Q.X. Near Real-Time Sensing of PWV from SGCAN and the Application Test in Numerical Weather Forecast. Chin. J. Geophys. 2004, 47, 719–727. [Google Scholar] [CrossRef]
- Dereczynski, C.P.; Oliveira, J.S.D.; Machado, C.O. Climatologia da precipitação no município do Rio de Janeiro. Rev. Bras. Meteorol. 2009, 24, 24–38. [Google Scholar] [CrossRef]
- Mota, G.V.; Song, S. Extreme rainfall events observed by GNSS-derived ZTD and IWV in Rio de Janeiro. 2019. Unpublished work. [Google Scholar]
- Lucena, A.J.; Correa, E.B.; Rotunno Filho, O.C.; Peres, L.F.; França, J.R.A.; Justi da Silva, M.G.A. Ilhas de calor e eventos de precipitação na região metropolitana do Rio de Janeiro (RMRJ). In Proceedings of the XIV World Water Congress, 10o SILUSBA, Porto de Galinhas, PE, Brazil, 25–29 September 2011. [Google Scholar]
- Lucena, A.J.; Peres, L.F.; Rotunno Filho, O.C.; França, J.R.A. Estimation of the urban heat island in the Metropolitan Area of Rio de Janeiro—Brazil. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015. [Google Scholar]
- Lucena, A.J.; Rotunno Filho, O.C.; França, J.R.A.; Peres, L.F.; Xavier, L.N.R. Urban climate and clues of heat island events in the metropolitan area of Rio de Janeiro. Theor. Appl. Climatol. 2012, 111, 497–511. [Google Scholar] [CrossRef]
- Brandão, A.M.P.M. As alterações climáticas na área metropolitana do Rio de Janeiro: Uma possível influência do crescimento urbano. In Natureza e Sociedade no Rio de Janeiro; Coleção Biblioteca Carioca, Rio de Janeiro, Divisão de Editoração, Departamento Geral de Documentação e Informação Cultural, Secretaria Municipal de Cultura, Turismo e Esportes, Prefeitura da Cidade do Rio de Janeiro: Rio de Janeiro, Brazil, 1992; pp. 143–200. [Google Scholar]
- Ferreira, F.P.M.; Cunha, S.B. Enchentes no Rio de Janeiro: Efeitos da urbanização no Rio Grande (Arroio Fundo)—Jacarepaguá. Anu. Inst. Geociências 1996, 19, 79–92. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Available online: https://www.ibge.gov.br/en/geosciences/downloads-geosciences.html (accessed on 9 September 2018).
- Instituto Brasileiro de Geografia e Estatística (IBGE). RBMC—Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS. Available online: http://www.ibge.gov.br/home/geociencias/geodesia/rbmc/rbmc.shtm (accessed on 9 August 2019).
- Fortes, L.P.S. Status of the Brazilian Network for Continuous Monitoring of GPS (RBMC). In GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications; Springer: Berlin/Heidelberg, Germany, 1996; pp. 85–88. [Google Scholar] [CrossRef]
- Fortes, L.P.S.; Luz, R.T.; Pereira, K.D.; Costa, S.M.A.; Blitzkow, D. The Brazilian Network for Continuous Monitoring of GPS (RBMC): Operation and Products. In Advances in Positioning and Reference Frames; Springer: Berlin/Heidelberg, Germany, 1998; pp. 73–78. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Dados Meteorológicos: Estações Automáticas. Available online: http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas (accessed on 9 September 2018).
- Danielson, J.J.; Gesch, D.B. Global multi-resolution terrain elevation data 2010 (GMTED2010). In Open-File Report; US Geological Survey: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Lott, N.; Vose, R.; Del Greco, S.A.; Ross, T.F.; Worley, S.; Comeaux, J.L. The integrated surface database: Partnerships and progress. In Proceedings of the 24th Conference on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology (IIPS), New Orleans, LA, USA, 20–25 January 2008. [Google Scholar]
- Smith, A.; Lott, N.; Vose, R. The Integrated Surface Database: Recent Developments and Partnerships. Bull. Am. Meteorol. Soc. 2011, 92, 704–708. [Google Scholar] [CrossRef]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric Correction for Troposphere and Stratosphere in Radio Ranging of Satellites. In The Use of Artificial Satellites for Geodesy; Geophysics Monograph Series; American Geophysical Union: Washington, DC, USA, 1972; Volume 15, pp. 247–251. [Google Scholar] [CrossRef]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere (Extended to 80 Kilometres (262,500 Feet); International Civil Aviation Organization: Montreal, QC, Canada, 1993. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; User Manual; Astronomical Institute, University of Bern: Bern, Switzerland, 2015. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Chen, G.; Herring, T.A. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. Solid Earth 1997, 102, 20489–20502. [Google Scholar] [CrossRef]
- Bock, O.; Willis, P.; Wang, J.; Mears, C. A high-quality, homogenized, global, long-term (1993–2008) DORIS precipitable water data set for climate monitoring and model verification. J. Geophys. Res. Atmos. 2014, 119, 7209–7230. [Google Scholar] [CrossRef]
- Stepniak, K.; Bock, O.; Wielgosz, P. Reduction of ZTD outliers through improved GNSS data processing and screening strategies. Atmos. Meas. Tech. 2018, 11, 1347–1361. [Google Scholar] [CrossRef] [Green Version]
- Borbas, E.; Menzel, P. MODIS Atmosphere L2 Atmosphere Profile Product. NASA MODIS Adaptive Processing System; Goddard Space Flight Center, 2017. Available online: http://dx.doi.org/10.5067/MODIS/MOD07_L2.061 (accessed on 9 August 2019).
- Borbas, E.; Menzel, P. MODIS Atmosphere L2 Atmosphere Profile Product. NASA MODIS Adaptive Processing System; Goddard Space Flight Center, 2017. Available online: http://dx.doi.org/10.5067/MODIS/MYD07_L2.061 (accessed on 9 August 2019).
- Moeller, C.C.; Frey, R.A.; Borbas, E.; Menzel, W.P.; Wilson, T.; Wu, A.; Geng, X. Improvements to Terra MODIS L1B, L2, and L3 science products through using crosstalk corrected L1B radiances. In Proceedings of the Earth Observing Systems XXII, San Diego, CA, USA, 5 September 2017. [Google Scholar]
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.L. Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Seemann, S.W.; Li, J.; Menzel, W.P.; Gumley, L.E. Operational Retrieval of Atmospheric Temperature, Moisture, and Ozone from MODIS Infrared Radiances. J. Appl. Meteorol. 2003, 42, 1072–1091. [Google Scholar] [CrossRef]
- Oliveira, F.P.; Amorim, H.S.; Dereczynski, C.P. Investigando a atmosfera com dados obtidos por radiossondas. Rev. Bras. Ensino Física 2018, 40, e3503. [Google Scholar] [CrossRef]
- Sapucci, L.F. Evaluation of Modeling Water-Vapor-Weighted Mean Tropospheric Temperature for GNSS-Integrated Water Vapor Estimates in Brazil. J. Appl. Meteorol. Climatol. 2014, 53, 715–730. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Xu, C.; Yan, F. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology. J. Geod. 2013, 88, 273–282. [Google Scholar] [CrossRef]
- Alraddawi, D.; Sarkissian, A.; Keckhut, P.; Bock, O.; Noël, S.; Bekki, S.; Irbah, A.; Meftah, M.; Claud, C. Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY. Atmos. Meas. Tech. 2018, 11, 2949–2965. [Google Scholar] [CrossRef] [Green Version]
- Cimini, D.; Pierdicca, N.; Pichelli, E.; Ferretti, R.; Mattioli, V.; Bonafoni, S.; Montopoli, M.; Perissin, D. On the accuracy of integrated water vapor observations and the potential for mitigating electromagnetic path delay error in InSAR. Atmos. Meas. Tech. 2012, 5, 1015–1030. [Google Scholar] [CrossRef] [Green Version]
- Guerova, G.; Jones, J.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385–5406. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Jarlemark, P.; Emardson, R.; Johansson, J.; Elgered, G. Ground-Based GPS for Validation of Climate Models: The Impact of Satellite Antenna Phase Center Variations. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3847–3854. [Google Scholar] [CrossRef]
- King, M.A.; Watson, C.S. Long GPS coordinate time series: Multipath and geometry effects. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Ning, T.; Elgered, G.; Johansson, J.M. The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour. Adv. Space Res. 2011, 47, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Ning, T.; Haas, R.; Elgered, G.; Willén, U. Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden. J. Geod. 2011, 86, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Buehler, S.A.; Östman, S.; Melsheimer, C.; Holl, G.; Eliasson, S.; John, V.O.; Blumenstock, T.; Hase, F.; Elgered, G.; Raffalski, U.; et al. A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmos. Chem. Phys. 2012, 12, 10925–10943. [Google Scholar] [CrossRef] [Green Version]
- Sapucci, L.F.; Machado, L.A.T.; da Silveira, R.B.; Fisch, G.; Monico, J.F.G. Analysis of Relative Humidity Sensors at the WMO Radiosonde Intercomparison Experiment in Brazil. J. Atmos. Ocean. Technol. 2005, 22, 664–678. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.D.; Lesht, B.M.; Clough, S.A.; Liljegren, J.C.; Revercomb, H.E.; Tobin, D.C. Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience. J. Atmos. Ocean. Technol. 2003, 20, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Bock, O.; Bouin, M.N.; Walpersdorf, A.; Lafore, J.P.; Janicot, S.; Guichard, F.; Agusti-Panareda, A. Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Q. J. R. Meteorol. Soc. 2007, 133, 2011–2027. [Google Scholar] [CrossRef]
- Dzambo, A.M.; Turner, D.D.; Mlawer, E.J. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms. Atmos. Meas. Tech. 2016, 9, 1613–1626. [Google Scholar] [CrossRef] [Green Version]
- Park, C.G.; Roh, K.M.; Cho, J.H. Radiosonde Sensors Bias in Precipitable Water Vapor from Comparisons with Global Positioning System Measurements. J. Astron. Space Sci. 2012, 29, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Van Baelen, J.; Aubagnac, J.P.; Dabas, A. Comparison of Near–Real Time Estimates of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer. J. Atmos. Ocean. Technol. 2005, 22, 201–210. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements. J. Clim. 2008, 21, 2218–2238. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A.; Immler, F.; Sommer, M.; Vömel, H. Radiation Dry Bias Correction of Vaisala RS92 Humidity Data and Its Impacts on Historical Radiosonde Data. J. Atmos. Ocean. Technol. 2013, 30, 197–214. [Google Scholar] [CrossRef]
Site (Program) | Altitude (m) | Receiver Model | Antenna Model | Installation Date |
---|---|---|---|---|
RDJN (iGMAS) | 39.45 | - UNICORE UB4B0I | - NOV750.R4 NOVS | 20 August, 2014 |
ONRJ | 39.53 | - LEICA GR25 | - LEICA AR10 (773758) | 4 July, 2013 |
(RBMC) | - TRIMBLE NETR8 | - GNSS CHOKE RING (TRM59800.00) | 11 March, 2015 | |
RIOD | 12.44 | - LEICA GR25 | - LEICA AR10 (773758) | 8 August, 2013 |
(RBMC) | - TRIMBLE NETR9 | - ZEPHYR 3 GEODETIC (TRM115000.00) | 12 March, 2018 | |
RJCG (RBMC) | 14.74 | - TRIMBLE NETR5 | - ZEPHYR GNSS GEODETIC MODEL 2 (TRM55971.00) | 11 December, 2007 |
(a) 00:00–02:45 LT with NS = 1648 | |||||
Stations: | RI | RD | VM | FC | XE |
Var: T | 22.700 | 23.072 | 21.086 | 21.936 | 19.483 |
DIFF. | Diff. (°C) | Diff. (%) | STD (K) | RMS (K) | R |
RI–RD | −0.372 | −1.639 | 0.541 | 0.656 | 0.973 |
RI–VM | 1.613 | 7.108 | 1.425 | 2.152 | 0.856 |
RI–FC | 0.764 | 3.367 | 1.502 | 1.685 | 0.777 |
RI–XE | 3.217 | 14.173 | 2.415 | 4.022 | 0.657 |
Stations: | RI | RD | VM | FC | XE |
Var: e | 19.344 | 20.319 | 20.842 | 21.322 | 21.060 |
DIFF. | Diff. (hPa) | Diff. (%) | STD (hPa) | RMS (hPa) | R |
RI–RD | −0.975 | −5.043 | 1.008 | 1.403 | 0.954 |
RI–VM | −1.580 | −8.166 | 1.929 | 2.493 | -- |
RI–FC | −1.978 | −10.225 | 1.210 | 2.318 | 0.914 |
RI–XE | −1.716 | −8.871 | 2.037 | 2.663 | 0.829 |
Stations: | RI | RD | VM | FC | XE |
Var: Tm | 286.744 | 286.007 | 286.001 | 285.019 | 285.318 |
DIFF. | Diff. (K) | Diff. (%) | STD (K) | RMS (K) | R |
RIOD (RI–RD) | 0.737 | 0.257 | 0.818 | 1.101 | 0.963 |
RIOD (RI–VM) | 0.744 | 0.259 | 0.606 | 0.959 | 0.978 |
RIOD (RI–FC) | 1.726 | 0.602 | 1.655 | 2.391 | 0.810 |
RIOD (RI–XE) | 1.426 | 0.497 | 0.777 | 1.624 | 0.961 |
Stations: | RIOD(RI) | RIOD(RD) | RIOD(VM) | RIOD(FC) | RIOD(XE) |
Var: IWV | 37.624 | 37.592 | 37.301 | 37.299 | 37.245 |
DIFF. | Diff. (K) | Diff. (%) | STD (K) | RMS (K) | R |
RIOD (RI–RD) | 0.032 | 0.085 | 0.067 | 0.074 | 1.000 |
RIOD (RI–VM) | 0.323 | 0.858 | 0.108 | 0.340 | 1.000 |
RIOD (RI–FC) | 0.325 | 0.865 | 0.204 | 0.384 | 1.000 |
RIOD (RI–XE) | 0.379 | 1.009 | 0.204 | 0.431 | 1.000 |
(b) 12:00–14:45 LT with NS = 3133 | |||||
Stations: | RI | RD | VM | FC | XE |
Var: T | 29.543 | 28.590 | 28.159 | 25.103 | 27.519 |
DIFF. | Diff. (°C) | Diff. (%) | STD (K) | RMS (K) | R |
RI–RD | 0.953 | 3.225 | 1.218 | 1.546 | 0.965 |
RI–VM | 1.384 | 4.685 | 1.007 | 1.712 | 0.976 |
RI–FC | 4.440 | 15.027 | 2.872 | 5.288 | 0.763 |
RI–XE | 2.024 | 6.849 | 1.253 | 2.380 | 0.958 |
Stations: | RI | RD | VM | FC | XE |
Var: e | 18.133 | 19.233 | 19.773 | 22.997 | 21.871 |
DIFF. | Diff. (hPa) | Diff. (%) | STD (hPa) | RMS (hPa) | R |
RI–RD | −1.100 | −6.067 | 1.265 | 1.676 | 0.926 |
RI–VM | −1.658 | −9.144 | 3.431 | 3.810 | -- |
RI–FC | −4.863 | −26.820 | 2.336 | 5.395 | 0.728 |
RI–XE | −3.738 | −20.612 | 1.800 | 4.148 | 0.884 |
Stations: | RI | RD | VM | FC | XE |
Var: Tm | 288.139 | 287.565 | 287.224 | 285.081 | 286.736 |
DIFF. | Diff. (K) | Diff. (%) | STD (K) | RMS (K) | R |
RIOD (RI–RD) | 0.574 | 0.199 | 0.877 | 1.048 | 0.965 |
RIOD (RI–VM) | 0.914 | 0.317 | 0.725 | 1.167 | 0.976 |
RIOD (RI–FC) | 3.058 | 1.061 | 2.068 | 3.692 | 0.763 |
RIOD (RI–XE) | 1.403 | 0.487 | 0.902 | 1.668 | 0.958 |
Stations: | RIOD(RI) | RIOD(RD) | RIOD(VM) | RIOD(FC) | RIOD(XE) |
Var: IWV | 37.194 | 37.040 | 36.903 | 36.364 | 36.973 |
DIFF. | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RIOD (RI–RD) | 0.154 | 0.414 | 0.143 | 0.210 | 1.000 |
RIOD (RI–VM) | 0.291 | 0.783 | 0.141 | 0.324 | 1.000 |
RIOD (RI–FC) | 0.830 | 2.231 | 0.368 | 0.908 | 1.000 |
RIOD (RI–XE) | 0.221 | 0.595 | 0.184 | 0.288 | 1.000 |
Local Time | AQUA | RDJN | Local Time | TERRA | RDJN | |
00:30–02:30 | 25.085 | 28.016 | 09:30–10:45 | 28.942 | 27.816 | |
12:45–14:30 | 30.179 | 29.408 | 22:00–23:15 | 23.617 | 28.316 | |
MODIS | NS | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
AQUA (night) | 223 | –2.931 | –10.462 | 4.999 | 5.785 | 0.841 |
TERRA (day) | 217 | 1.125 | 4.046 | 5.273 | 5.379 | 0.887 |
AQUA (day) | 242 | 0.771 | 2.622 | 5.578 | 5.620 | 0.891 |
TERRA (night) | 145 | –4.699 | –16.596 | 4.406 | 6.431 | 0.889 |
Local Time | AQUA | RIOD | Local Time | TERRA | RIOD | |
00:30–02:30 | 26.242 | 31.143 | 09:30–10:45 | 29.564 | 30.239 | |
12:45–14:30 | 30.707 | 31.461 | 22:00–23:15 | 23.456 | 30.768 | |
MODIS | NS | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
AQUA (night) | 234 | –4.901 | –15.736 | 4.683 | 6.772 | 0.883 |
TERRA (day) | 278 | –0.675 | –2.232 | 4.729 | 4.769 | 0.920 |
AQUA (day) | 324 | –0.755 | –2.399 | 6.499 | 6.533 | 0.873 |
TERRA (night) | 204 | –7.313 | –23.767 | 4.371 | 8.514 | 0.887 |
Local Time | AQUA | RJCG | Local Time | TERRA | RJCG | |
00:30–02:30 | 25.687 | 31.627 | 09:30–10:45 | 29.575 | 31.491 | |
12:45–14:30 | 31.495 | 32.582 | 22:00–23:15 | 23.130 | 31.778 | |
MODIS | NS | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
AQUA (night) | 266 | –5.940 | –23.123 | 3.904 | 7.104 | 0.880 |
TERRA (day) | 258 | –1.916 | –6.477 | 4.287 | 4.688 | 0.928 |
AQUA (day) | 290 | –1.087 | –3.452 | 5.107 | 5.212 | 0.911 |
TERRA (night) | 244 | –8.649 | –37.391 | 3.917 | 9.491 | 0.890 |
(a) 0900 LT | RDJN(i) = 34.745 | ONRJ(i) = 34.778 | RIOD(i) = 35.720 | ||
NS = 834 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN(i)–RDJN(ii) | −0.004 | −0.012 | 0.654 | 0.653 | 0.999 |
ONRJ(i)–ONRJ(ii) | −0.025 | −0.073 | 0.641 | 0.641 | 0.999 |
RIOD(i)–RIOD(ii) | 0.003 | 0.010 | 0.798 | 0.798 | 0.998 |
RDJN(i)–RDJN(iii) | 0.010 | 0.030 | 0.394 | 0.394 | 0.999 |
ONRJ(i)–ONRJ(iii) | −0.008 | −0.023 | 0.398 | 0.398 | 0.999 |
RIOD(i)–RIOD(iii) | −0.008 | −0.021 | 0.502 | 0.502 | 0.999 |
RDJN(i)–RDJN(iv) | −0.005 | −0.014 | 0.366 | 0.366 | -- |
ONRJ(i)–ONRJ(iv) | −0.004 | −0.010 | 0.386 | 0.385 | -- |
RIOD(i)–RIOD(iv) | 0.004 | 0.012 | 0.468 | 0.468 | -- |
RDJN(i)–RDJN(v) | −0.031 | −0.088 | 0.629 | 0.629 | -- |
ONRJ(i)–ONRJ(v) | −0.027 | −0.078 | 0.662 | 0.662 | -- |
RIOD(i)–RIOD(v) | −0.028 | −0.078 | 0.784 | 0.784 | -- |
RDJN(i)–RDJN(vi) | 0.002 | 0.006 | 0.337 | 0.337 | 1.000 |
ONRJ(i)–ONRJ(vi) | −0.011 | −0.032 | 0.332 | 0.332 | 1.000 |
RIOD(i)–RIOD(vi) | −0.001 | −0.004 | 0.414 | 0.414 | 0.999 |
(b) 2100 LT | RDJN(i) = 36.480 | ONRJ(i) = 36.530 | RIOD(i) = 37.579 | ||
NS = 823 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN(i)–RDJN(ii) | −0.030 | −0.082 | 0.702 | 0.702 | 0.998 |
ONRJ(i)–ONRJ(ii) | −0.023 | −0.062 | 0.706 | 0.706 | 0.998 |
RIOD(i)–RIOD(ii) | −0.109 | −0.291 | 0.808 | 0.815 | 0.998 |
RDJN(i)–RDJN(iii) | −0.011 | −0.029 | 0.337 | 0.337 | 1.000 |
ONRJ(i)–ONRJ(iii) | −0.013 | −0.036 | 0.338 | 0.338 | 1.000 |
RIOD(i)–RIOD(iii) | −0.036 | −0.096 | 0.400 | 0.401 | 0.999 |
RDJN(i)–RDJN(iv) | 0.025 | 0.068 | 1.140 | 1.140 | -- |
ONRJ(i)–ONRJ(iv) | 0.007 | 0.018 | 1.146 | 1.146 | -- |
RIOD(i)–RIOD(iv) | −0.251 | −0.668 | 1.607 | 1.626 | -- |
RDJN(i)–RDJN(v) | 0.032 | 0.088 | 1.218 | 1.218 | -- |
ONRJ(i)–ONRJ(v) | 0.005 | 0.014 | 1.202 | 1.201 | -- |
RIOD(i)–RIOD(v) | −0.231 | −0.614 | 1.607 | 1.622 | -- |
RDJN(i)–RDJN(vi) | −0.013 | −0.037 | 0.332 | 0.332 | 1.000 |
ONRJ(i)–ONRJ(vi) | −0.012 | −0.033 | 0.334 | 0.334 | 1.000 |
RIOD(i)–RIOD(vi) | −0.049 | −0.129 | 0.385 | 0.388 | 1.000 |
(a) Low Moisture: RADS IWV ≤ 30 mm | |||||
ST | RADS | RDJN | ONRJ | RIOD | |
0900 LT | 23.345 | 22.274 | 22.298 | 23.072 | |
NS = 300 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RADS–RDJN | 1.071 | 4.586 | 0.961 | 1.438 | 0.976 |
RADS–ONRJ | 1.047 | 4.483 | 0.946 | 1.410 | 0.976 |
RADS–RIOD | 0.273 | 1.169 | 1.001 | 1.036 | 0.975 |
ST | RADS | RDJN | ONRJ | RIOD | |
2100 LT | 24.657 | 22.618 | 22.665 | 23.452 | |
NS = 238 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RADS–RDJN | 2.040 | 8.273 | 0.994 | 2.268 | 0.959 |
RADS–ONRJ | 1.993 | 8.082 | 1.013 | 2.235 | 0.957 |
RADS–RIOD | 1.205 | 4.889 | 1.067 | 1.609 | 0.954 |
(b) Intermediate Moisture: 30 mm < RADS IWV < 50 mm | |||||
ST | RADS | RDJN | ONRJ | RIOD | |
0900 LT | 38.980 | 38.229 | 38.292 | 39.306 | |
NS = 415 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RADS–RDJN | 0.751 | 1.925 | 1.328 | 1.524 | 0.976 |
RADS–ONRJ | 0.688 | 1.764 | 1.334 | 1.499 | 0.975 |
RADS–RIOD | −0.326 | −0.838 | 1.286 | 1.325 | 0.977 |
ST | RADS | RDJN | ONRJ | RIOD | |
2100 LT | 39.464 | 37.147 | 37.184 | 38.356 | |
NS = 409 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RADS–RDJN | 2.317 | 5.872 | 1.429 | 2.721 | 0.970 |
RADS–ONRJ | 2.280 | 5.777 | 1.475 | 2.714 | 0.968 |
RADS–RIOD | 1.108 | 2.809 | 1.392 | 1.778 | 0.972 |
(c) High Moisture: RADS IWV ≥ 50 mm | |||||
ST | RADS | RDJN | ONRJ | RIOD | |
0900 LT | 54.364 | 54.017 | 54.063 | 55.111 | |
NS = 119 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RADS–RDJN | 0.347 | 0.638 | 1.454 | 1.489 | 0.927 |
RADS–ONRJ | 0.301 | 0.553 | 1.499 | 1.522 | 0.924 |
RADS–RIOD | −0.747 | −1.375 | 1.435 | 1.612 | 0.934 |
ST | RADS | RDJN | ONRJ | RIOD | |
2100 LT | 56.361 | 53.739 | 53.814 | 55.107 | |
NS = 176 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RADS–RDJN | 2.621 | 4.651 | 1.879 | 3.222 | 0.913 |
RADS–ONRJ | 2.547 | 4.518 | 1.873 | 3.158 | 0.913 |
RADS–RIOD | 1.254 | 2.225 | 1.726 | 2.129 | 0.925 |
00:00−02:45 LT | RDJN = 36.137 | ONRJ = 36.238 | RIOD = 37.267 | ||
NS = 11521 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.101 | −0.278 | 0.310 | 0.326 | 1.000 |
RDJN–RIOD | −1.130 | −3.126 | 0.915 | 1.454 | 0.997 |
03:00−05:45 LT | RDJN = 35.441 | ONRJ = 35.531 | RIOD = 36.520 | ||
NS = 11428 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.090 | −0.253 | 0.267 | 0.282 | 1.000 |
RDJN–RIOD | −1.079 | −3.043 | 0.838 | 1.366 | 0.998 |
06:00−08:45 LT | RDJN = 34.995 | ONRJ = 35.074 | RIOD = 35.997 | ||
NS = 11493 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.079 | −0.226 | 0.278 | 0.289 | 1.000 |
RDJN–RIOD | −1.003 | −2.865 | 0.845 | 1.311 | 0.998 |
09:00−11:45 LT | RDJN = 34.906 | ONRJ = 34.950 | RIOD = 35.955 | ||
NS = 10900 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.044 | −0.125 | 0.291 | 0.294 | 1.000 |
RDJN–RIOD | −1.049 | −3.004 | 0.957 | 1.420 | 0.997 |
12:00−14:45 LT | RDJN = 35.295 | ONRJ = 35.353 | RIOD = 36.559 | ||
NS = 10825 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.057 | −0.162 | 0.322 | 0.327 | 1.000 |
RDJN–RIOD | −1.264 | −3.580 | 1.127 | 1.693 | 0.996 |
15:00−17:45 LT | RDJN = 36.172 | ONRJ = 36.219 | RIOD = 37.533 | ||
NS = 11164 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.046 | −0.128 | 0.309 | 0.312 | 1.000 |
RDJN–RIOD | −1.360 | −3.760 | 1.096 | 1.747 | 0.996 |
18:00−20:45 LT | RDJN = 36.778 | ONRJ = 36.825 | RIOD = 38.050 | ||
NS = 11251 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.048 | −0.129 | 0.326 | 0.329 | 1.000 |
RDJN–RIOD | −1.273 | −3.461 | 1.052 | 1.651 | 0.996 |
21:00−23:45 LT | RDJN = 36.732 | ONRJ = 36.820 | RIOD = 38.017 | ||
NS = 11555 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.088 | −0.238 | 0.355 | 0.366 | 1.000 |
RDJN–RIOD | −1.285 | −3.497 | 1.006 | 1.632 | 0.997 |
TOTAL MEAN | RDJN | ONRJ | RIOD | ||
(mm) | 35.676 | 35.742 | 36.848 | ||
NS = 85451 | Diff. (mm) | Diff. (%) | STD (mm) | RMS (mm) | R |
RDJN–ONRJ | −0.067 | −0.187 | 0.302 | 0.309 | 1.000 |
RDJN–RIOD | −1.172 | −3.285 | 0.982 | 1.529 | 0.997 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, G.V.; Song, S.; Stępniak, K. Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro. Remote Sens. 2019, 11, 2652. https://doi.org/10.3390/rs11222652
Mota GV, Song S, Stępniak K. Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro. Remote Sensing. 2019; 11(22):2652. https://doi.org/10.3390/rs11222652
Chicago/Turabian StyleMota, Galdino V., Shuli Song, and Katarzyna Stępniak. 2019. "Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro" Remote Sensing 11, no. 22: 2652. https://doi.org/10.3390/rs11222652
APA StyleMota, G. V., Song, S., & Stępniak, K. (2019). Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro. Remote Sensing, 11(22), 2652. https://doi.org/10.3390/rs11222652