Melting Layer Detection and Characterization based on Range Height Indicator–Quasi Vertical Profiles
Abstract
:1. Introduction
2. Methods
2.1. R-QVP Methodology
2.2. ML Detection Algorithm
3. Observational Data and Processing
4. Results and Discussion
4.1. Case 1: 24 July 2014
4.2. Case 2: 11 May 2015
4.3. Case 3: 2 December 2015
4.4. Case 4: 5 March 2016
4.5. Case 5: 1 October 2016
5. Polarimetric Variables Statistics in ML, Rain, and Snow
- The enhanced values of Zh, Zdr, and Kdp, and low ρhv values present in the ML are due to the mixed phase of hydrometeors.
- Zh is lower in the snow region than in rain due to lower dielectric effects of ice particle [26].
- The snow aggregates are larger with low density and randomly oriented, producing smaller Zdr (< 0.5 dB) values in the snow than in rain [15].
- ρhv is lower in pristine ice crystals, especially mixed with aggregates [26], thus the snow region contains a lower ρhv than that of the rain region.
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giangrande, S.E.; Krause, J.M.; Ryzhkov, A.V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. Climatol. 2008, 47, 1354–1364. [Google Scholar] [CrossRef]
- Boodoo, S.; Hudak, D.; Donaldson, N.; Leduc, M. Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteorol. Climatol. 2010, 49, 1779–1793. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Clark, K.A.; Kingsmill, D.E. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteorol. Climatol. 2007, 46, 154–166. [Google Scholar] [CrossRef]
- Shusse, Y.; Maesaka, T.; Kieda, K.; Iwanami, K. Polarimetric radar observation of the melting layer in a winter precipitation system associated with a South-coast cyclone in Japan. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 375–385. [Google Scholar] [CrossRef]
- Yuan, F.; Lee, Y.; Meng, Y.; Ong, J. Characterization of S-band dual-polarized radar data for the convective rain melting layer detection in a tropical region. Remote Sens. 2018, 10, 1740. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Scipion, D.; Berne, A. Detection and characterization of the melting layer based on polarimetric radar scans. Q. J. R. Meteorol. Soc. 2016, 142, 108–124. [Google Scholar] [CrossRef]
- Van den Heuvel, F.; Gabella, M.; Germann, U.; Berne, A. Characterisation of the melting layer variability in an Alpine valley based on polarimetric X-band radar scans. Atmos. Meas. Tech. 2018, 11, 5181. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Reeves, H.; Kumjian, M.; Tschallener, T.; Trömel, S.; Simmer, C. Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Ocean. Technol. 2016, 33, 551–562. [Google Scholar] [CrossRef]
- Griffin, E.M.; Schuur, T.J.; Ryzhkov, A.V. A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteorol. Climatol. 2018, 57, 31–50. [Google Scholar] [CrossRef]
- Tobin, D.M.; Kumjian, M.R. Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Weather. Forecast. 2017, 32, 2065–2082. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Mishra, S.; Giangrande, S.E.; Toto, T.; Ryzhkov, A.V.; Bansemer, A. Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos. 2016, 121, 3584–3607. [Google Scholar] [CrossRef]
- Kaltenboeck, R.; Ryzhkov, A. A freezing rain storm explored with a C-band polarimetric weather radar using the QVP methodology. Meteorol. Z. 2017, 26, 207–222. [Google Scholar] [CrossRef]
- Bukovčić, P.; Zrnić, D.; Zhang, G. Winter precipitation liquid–ice phase transitions revealed with polarimetric radar and 2DVD observations in central Oklahoma. J. Appl. Meteorol. Climatol. 2017, 56, 1345–1363. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Lombardo, K.A. Insights into the evolving microphysical and kinematic structure of northeastern US winter storms from dual-polarization Doppler radar. Mon. Weather. Rev. 2017, 145, 1033–1061. [Google Scholar] [CrossRef]
- Allabakash, S.; Lim, S.; Chandrasekar, V.; Min, K.H.; Choi, J.; Jang, B. X-Band dual polarization radar observations of snow growth processes of a severe winter storm: Case of 12 December 2013 in South Korea. J. Atmos. Ocean. Technol. 2019, 36, 1217–1235. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K. Freezing-level estimation with polarimetric radar. J. Appl. Meteorol. 2004, 43, 1541–1553. [Google Scholar] [CrossRef]
- Scarchilli, G.; Gorgucci, V.; Chandrasekar, V.; Dobaie, A. Self-consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote. Sens. 1996, 34, 22–26. [Google Scholar] [CrossRef]
- Wang, Y.; Chandrasekar, V. Algorithm for estimation of the specific differential phase. J. Atmos. Ocean. Technol. 2009, 26, 2565–2578. [Google Scholar] [CrossRef]
- Chen, H.; Lim, S.; Chandrasekar, V.; Jang, B.J. Urban hydrological applications of dual-polarization X-band radar: Case study in Korea. J. Hydrol. Eng. 2016, 22, E5016001. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Bosilovich, M.; Akella, S.; Coy, L.; Cullather, R.; Draper, C.; Gelaro, R.; Kovach, R.; Liu, Q.; Molod, A.; Norris, P.; et al. MERRA-2: Initial evaluation of the climate. NASA Technical Report. Series on Global Modelling and Data Assimilation, NASA/TM–2015-104606; NASA: Washington, DC, USA, 2015.
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations; Academic Press: Cambridge, UK, 1993; p. 562. [Google Scholar]
- Kennedy, P.C.; Rutledge, S.A. S-band dual-polarization radar observations of winter storms. J. Appl. Meteorol. Climatol. 2011, 50, 844–858. [Google Scholar] [CrossRef]
- Bechini, R.; Baldini, L.; Chandrasekar, V. Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteorol. Climatol. 2013, 52, 1147–1169. [Google Scholar] [CrossRef]
- Moisseev, D.N.; Lautaportti, S.; Tyynela, J.; Lim, S. Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos. 2015, 120, 12644–12655. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 634. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation, 2nd ed.; Kluwer Academic: Dordrecht, The Netherlands, 1997; p. 954. [Google Scholar]
- Trömel, S.; Ryzhkov, A.; Hickman, B.; Mühlbauer, K.; Simmer, C. Climatology of the vertical profiles of polarimetric radar variables at X band in stratiform clouds. In Proceedings of the 38th Conference on Radar Meteorology, Bonn, Germany, 27–31 August 2017. [Google Scholar]
Time | Scan Strategy | CAPPI |
---|---|---|
5 min | 1. PPI EL: 5°, AZ: 0 -> 360° | (1min) |
2. RHI EL: 0 -> 180°, AZ: 0: 180° | ||
3. RHI EL: 180 -> 0°, AZ: 162:342° | ||
1. PPI EL: 6°, AZ: 324 -> 323.9° | (1, 2 min) | |
2. RHI EL: 0 -> 180°, AZ: 324:144° | ||
3. RHI EL: 180 -> 0°, AZ: 126:306° | ||
1. PPI EL: 5°, AZ: 288 -> 287.9° | (2, 3 min) | |
2. RHI EL: 0 -> 180°, AZ: 288:108° | ||
3. RHI EL: 180 -> 0°, AZ: 90:270° | ||
1. PPI EL: 6°, AZ: 252 -> 251.9° | (3, 4 min) | |
2. RHI EL: 0 -> 180°, AZ: 252:72° | ||
3. RHI EL: 180 -> 0°, AZ: 54:234° | ||
1. PPI EL: 5°, AZ: 216 -> 215.9° | (4, 5 min) | |
2. RHI EL: 0 -> 180°, AZ: 216:36° | ||
3. RHI EL: 180 -> 0°, AZ: 18:198° | ||
PPI EL: 10°, AZ: 198 -> 197.9° | ||
5 min | 1. PPI EL: 6°, AZ: 180 -> 179.9° | (5, 6 min) |
2. RHI EL: 0 -> 180°, AZ: 180:0° | ||
3. RHI EL: 180 -> 0°, AZ: 342:162° | ||
1. PPI EL: 5°, AZ: 144 -> 143.9° | (6, 7 min) | |
2. RHI EL: 0 -> 180°, AZ: 144:324° | ||
3. RHI EL: 180 -> 0°, AZ: 306:126° | ||
1. PPI EL: 6°, AZ: 108 -> 107.9° | (7, 8 min) | |
2. RHI EL: 0 -> 180°, AZ: 108:288° | ||
3. RHI EL: 180 -> 0°, AZ: 270:90° | ||
1. PPI EL: 5°, AZ: 72 -> 71.9° | (8, 9 min) | |
2. RHI EL: 0 -> 180°, AZ: 72:252° | ||
3. RHI EL: 180 -> 0°, AZ: 234:54° | ||
1. PPI EL: 6°, AZ: 36 -> 35.9° | (9, 10 min) | |
2. RHI EL: 0 -> 180°, AZ: 36:216° | ||
3. RHI EL: 180 -> 0°, AZ: 198:18° | ||
PPI EL: 10°, AZ: 198 -> 197.9° |
Variable | Statistics | ML | Rain | Snow |
---|---|---|---|---|
Zh (dBZ) | Mean STD Q10 Q50 Q90 | 21.07 5.95 13.23 21.15 28.38 | 18.12 6.21 10.22 18.42 26.19 | 11.02 5.37 3.75 11.32 17.41 |
Zdr (dB) | Mean STD Q10 Q50 Q90 | 0.69 0.52 0.16 0.60 1.36 | 0.41 0.62 −0.23 0.34 1.22 | 0.29 0.35 −0.01 0.24 0.67 |
Kdp (okm−1) | Mean STD Q10 Q50 Q90 | 0.29 0.28 −0.01 0.25 0.62 | 0.13 0.20 −0.01 0.07 0.33 | 0.39 0.39 0 0.30 0.90 |
ρhv | Mean STD Q10 Q50 Q90 | 0.978 0.04 0.976 0.978 0.983 | 0.983 0.04 0.978 0.984 0.986 | 0.980 0.05 0.975 0.981 0.984 |
Melting Layer (average) | Top (km) | Bottom (km) |
---|---|---|
Winter | 1.73 | 1.06 |
Spring | 3.24 | 2.72 |
Summer | 5.05 | 4.43 |
Autumn | 3.71 | 3.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allabakash, S.; Lim, S.; Jang, B.-J. Melting Layer Detection and Characterization based on Range Height Indicator–Quasi Vertical Profiles. Remote Sens. 2019, 11, 2848. https://doi.org/10.3390/rs11232848
Allabakash S, Lim S, Jang B-J. Melting Layer Detection and Characterization based on Range Height Indicator–Quasi Vertical Profiles. Remote Sensing. 2019; 11(23):2848. https://doi.org/10.3390/rs11232848
Chicago/Turabian StyleAllabakash, Shaik, Sanghun Lim, and Bong-Joo Jang. 2019. "Melting Layer Detection and Characterization based on Range Height Indicator–Quasi Vertical Profiles" Remote Sensing 11, no. 23: 2848. https://doi.org/10.3390/rs11232848
APA StyleAllabakash, S., Lim, S., & Jang, B. -J. (2019). Melting Layer Detection and Characterization based on Range Height Indicator–Quasi Vertical Profiles. Remote Sensing, 11(23), 2848. https://doi.org/10.3390/rs11232848