Mathematical Assessment of the Effects of Substituting the Band Radiative Transfer Equation (RTE) for the Spectral RTE in the Applications of Earth’s Surface Temperature Retrievals from Spaceborne Infrared Imageries
Abstract
:1. Introduction
2. Description of the General Equation
2.1. The TOA Outgoing Radiance
2.2. The Radiance Leaving the Earth’s Surface
2.3. The Atmospheric and Sky Radiances
2.4. Descriptions of the Involved Remaining Quantities
3. Specifications on the Surface-Leaving Radiance
3.1. Isotropic Approximations for Downward Atmospheric and Sky Radiances over
3.2. LRAs for the Atmospheric and Sky Irradiances in the 3–14 Range
3.3. Modeling of Solar Radiance over
3.3.1. Separation of the Solar Radiance over the MWIR Spectral Window ()
3.3.2. Factorization of the BRDF for Approximation of the Reflected Solar Beam over the MWIR Spectral Window
3.3.3. Limitations of the MWIR Observations for ST Retrieval
4. The Final Spectral Radiative Transfer Equation
5. Derivation of the Band Equation
5.1. Law of Conservation of Energy and the MVT2 for Integrals
5.2. Approximation of the Integral of a Product
5.3. The Band RTEs for the Inverse Problem of ST Retrieval
5.4. Inspirations of the Effects of the Three Band-Effective Transmittances
6. Effects of the IA and Discussion
6.1. Instrument and Input Data
6.2. Sensitivity of Retrieved ST on Radiance Uncertainties
6.3. Assessment of Accuracies of the Integral Assumption
7. Uncertainty Sources of the Retrieved ST Products
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Unit | Definition |
---|---|---|
, | Radian (1) | , where is the local viewing zenith angle. |
, | , where is the local incident zenith angle. | |
, | , where is the local solar incident zenith angle. | |
, , | Observing, incident, and solar incident azimuthal angles, respectively. | |
1 | Local emission, observing, or reflection direction. | |
, | Local incident direction, local solar incident direction. | |
1 | Local surface BRDF. | |
Local surface BRDF anisotropic factor. | ||
local surface reflectance (also inferred to as albedo or hemispherical reflectance in visible and near-IR range). | ||
Local surface emissivity. | ||
Local surface emissivity in direction . | ||
K | Surface temperature. | |
Near surface air temperature. | ||
Temperature profile along altitude. | ||
Temperature profile along upward transmittance . | ||
1 | Atmospheric transmittance from the ground to the TOA in direction . | |
Atmospheric transmittance from the ground to an altitude in direction . | ||
Atmospheric transmittance from the TOA to the ground in direction . | ||
Atmospheric transmittance from the TOA to an altitude in direction . | ||
. | ||
Downward transmittance in direction from the altitude with a solar-beam transmittance to the ground. | ||
Upward transmittance defined from the altitude that corresponding to to the TOA along a viewing direction . | ||
Scattering phase function of an intercepting particle that distributed in the wave traveling path. | ||
Single scattering albedo of a particle that distributed in the wave traveling path. | ||
Molar density of a bulk atmosphere at an altitude with transmittance . | ||
, | TOA outgoing radiance at the entrance slit of a radiometer in direction . | |
, | Band effective radiance collected by a radiometer channel. | |
1 | Spectral response function for a specific channel of a radiometer to calibrate the observed signal to the radiative transfer equation. | |
Surface leaving radiance at ground level in direction . | ||
Attenuated Surface leaving radiance at TOA in direction . | ||
Downward solar scattering radiance in direction when illuminated in , sky radiance in direction when illuminated in . | ||
Planck’s function. | ||
Downward atmospheric emitting radiance in direction when the atmosphere with transmittance profile and temperature profile , also called atmospheric radiance for short. | ||
Upward solar scattering radiance in direction when illuminated in , | ||
Upward atmospheric emitting radiance in direction when the atmosphere with transmittance profile and temperature profile , also called atmospheric upward radiance for short. | ||
Atmospheric source radiance. | ||
Solar irradiance at the TOA. | ||
Atmospheric downward irradiance. | ||
Sky or downward solar diffuse irradiance. |
Symbol | Physical Quantity | Description | Value/Unit |
---|---|---|---|
Spectral radiance | The energy () emitted per second per unit wavelength () per steradian () from one square meter of a perfect blackbody-surface in thermodynamic equilibrium at temperature T () | Where and | |
radiance | The power () per steradian () from one square meter of a perfect blackbody-surface in thermodynamic equilibrium at temperature T () | ||
Spectral exitance | defined as spectral hemispherical radiance with for outgoing and for incoming exitance | ||
. | radiant flux density, radiant exitanceor Irradiance, | defined as hemispherical radiance with . for outgoing and for incoming radiation | |
. | Radiant intensity | defined as Radiant flux emitted, reflected, transmitted or received, per unit solid angle. | . |
Radiant flux, | defined as Radiant energy, denoted by , emitted, reflected, transmitted or received per unit time for some giving surface area and sometimes also called "radiant power". | ||
physical temperature | |||
Planck’s constant | |||
wavelength | |||
Boltzmann’s constant | |||
speed of light in a medium, whether material or vacuum | |||
the Stefan–Boltzmann constant or irradiance coefficient, |
Appendix B
Appendix C
Appendix D
References
- Leese, J.; Pichel, W.; Goddard, B.; Brower, R. An experimental model for automated detection, measurement and quality control of sea-surface temperatures from ITOS IR data. In Proceedings of the 7th International Symposium on Remote Sensing of the Environment, National Environmental Satellite Service, Ann Arbor, MI, USA, March 1971. [Google Scholar]
- Prabhakara, C.; Dalu, G.; Kunde, V.G. Estimation of sea surface temperature from remote sensing in the 11- to 13-μm window region. J. Geophys. Res. 1974, 79, 5039–5044. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of sea surface temperature from two infrared window measurements with different absorptions. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Wan, Z.M. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Wan, Z.M.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Goody, R.M.; West, R.; Chen, L.; Crisp, D. The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transf. 1989, 42, 539–550. [Google Scholar] [CrossRef]
- Lacis, A.A.; Oinas, V.A. Description of the correlated k-distribution method for modeling nongrey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 1991, 96, 9027–9063. [Google Scholar] [CrossRef]
- Li, J.; Barker, H.W. A Radiation Algorithm with Correlated-k Distribution. Part I: Local Thermal Equilibrium. J. Atmos. Sci. 2005, 62, 286–309. [Google Scholar] [CrossRef]
- Makké, L.; Musson-Genon, L.; Carissimo, B.; Plion, P.; Milliez, M.; Douce, A. A New Method for Fast Computation of Three-Dimensional Atmospheric Infrared Radiative Transfer in a Nonscattering Medium, with an Application to Dynamical Simulation of Radiation Fog in a Built Environment. J. Atmos. Sci. 2016, 73, 4137–4149. [Google Scholar] [CrossRef]
- Mihalas, D. Stellar Atmospheres, 2nd ed.; W. H. Freeman and Co.: San Francisco, CA, USA, 1978; 650p. [Google Scholar]
- Feofilov, A.G.; Kutepov, A.A. Infrared Radiation in the Mesosphere and Lower Thermosphere: Energetic Effects and Remote Sensing. Surv. Geophys. 2012, 33, 1231–1280. [Google Scholar] [CrossRef]
- Zachor, A.S.; Sharma, R.D. Retrieval of non-LTE vertical structure from a spectrally resolved infrared limb radiance profile. J. Geophys. Res. 1985, 90, 467–475. [Google Scholar] [CrossRef]
- Zachor, A.S.; Sharma, R.D.; Nadile, R.M.; Stair, A.T., Jr. Inversion of a spectrally resolved limb radiance profile for the NO fundamental band. J. Geophys. Res. 1985, 90, 9776–9782. [Google Scholar] [CrossRef]
- Timofeyev, Y.; Kostsov, V.S.; Grassl, H. Numerical investigations of the accuracy of the remote sensing of non-LTE atmosphere by spaceborne spectral measurements of limb IR radiation: 15 um CO2 bands, 9.6 um O3 bands, and 10 um CO2 laser bands. J. Quant. Spectrosc. Radiat. Transf. 1995, 53, 613–632. [Google Scholar] [CrossRef]
- López-Valverde, M.A.; López-Puertas, M.; Marks, C.J.; Taylor, F.W. Global and seasonal variations in the middle atmosphere carbon monoxide from UARS/ISAMS. Geophys. Res. Lett. 1993, 20, 124–127. [Google Scholar] [CrossRef]
- López-Valverde, M.A.; López-Puertas, M.; Remedios, J.J.; Rodgers, C.D.; Taylor, F.W.; Zipf, E.C.; Erdmann, P.W. Validation of measurements of carbon monoxide from the improved stratospheric and mesospheric sounder. J. Geophys. Res. 1996, 101, 9929–9955. [Google Scholar] [CrossRef]
- Kostsov, V.S.; Yu, M.; Timofeyev, K.; Vollmann; Grossmann, K. Preliminary results of the retrieval of the CO2 vibrational state populations from the 15 mm limb radiance spectra measured by CRISTA. In Proceedings of the XXV Annual European Meeting on Atmospheric Studies by Optical Methods, Granada, Spain, 21–25 September 1998; pp. 131–134. [Google Scholar]
- Kostsov, V.S.; Yu, M.; Timofeyev, K.; Grossmann, K.; Vollmann; Fischer, H. Interpretation of the limb radiance measurements accounting for the non-LTE conditions. In Proceedings of the European Symposium on Atmospheric Measurements from Space (ESAMS’99), Noordwijk, The Netherlands, 18–22 January 1999; pp. 251–256. [Google Scholar]
- Zhou, D.K.; Mlynczak, M.G.; López-Puertas, M.; Zaragoza, G. Evidence of non-LTE effects in mesospheric water vapour from spectrally resolved emissions observed by CIRRIS-1A. Geophys. Res. Lett. 1999, 26, 67–70. [Google Scholar] [CrossRef]
- Funke, B.; López-Puertas, M.; Stiller, G.; von Clarmann, T.; Höpfner, M.; Kuntz, M. Non-LTE state distribution of nitric oxide and its impact on the retrieval of the stratospheric daytime NO profile from MIPAS limb sounding experiments. Adv. Space Res. 2000, 26, 947–950. [Google Scholar] [CrossRef]
- Mertens, C.J.; Mlynczak, M.G.; López-Puertas, M.; Wintersteiner, P.P.; Picard, R.; Winick, R.; Gordley, L.L.; Russell, J.M., III. Retrieval of mesospheric and lower thermospheric kinetic temperatures from measurements of CO2 15 mm Earth limb emission under non-LTE conditions. Geophys. Res. Lett. 2001, 28, 1391–1394. [Google Scholar] [CrossRef]
- Kneizys, F.X.; Shettle, E.P.; Gallery, W.O.; Chetwynd, J.H.; Abreu, L.W.; Selby, J.E.A.; Clough, S.A.; Fenn, R.W. Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6; AFGL-TR-83-0187; Air Force Geophysics Laboratory: Bedford, MA, USA, 1983. [Google Scholar]
- Berk, A.; Bemstein, L.S.; Robertson, D.C. MODTRAN: A Moderate Resolution Model for LOWTRAN; Rep. AFGLTR-87-0220; Spectral Sciences, Inc.: Burlington, MA, USA, 1987. [Google Scholar]
- Cornette, W.M.; Acharya, P.K.; Robertson, D.C.; Anderson, G.P. Moderate Spectral Atmospheric Radiance and Transmittance Code (MOSART); Rep. R-057-94(11-30); Photon Research Associates, Inc.: La Jolla, CA, USA, 1994. [Google Scholar]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.Z.; Yan, G.J.; Wan, Z.M.; Trigoef, I.F.; Sobrinog, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.M. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD)-Version 3.3. 1999. Available online: https://icess.eri.ucsb.edu/modis/LST_ATBD/atbd-mod11-v3.3.pdf (accessed on 16 September 2018).
- Wan, Z.M.; Zhang, Y.; Zhang, Q.; Li, Z.L. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.M.; Zhang, Y.; Zhang, Q.; Li, Z.L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.L. Towards a local split window method over land surfaces. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Franc, G.B.; Cracknell, A.P. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazil. Int. J. Remote Sens. 1994, 15, 1695–1712. [Google Scholar] [CrossRef]
- Jürgen, V.V. Land surface temperature retrieval from NOAA AVHRR data. In Advances in the Use of NOAA AVHRR Data for Land Applications; D’Souza, G., Belward, A.S., Malingreau, J.P., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 125–151. ISBN 9780792339113. [Google Scholar]
- Wan, Z.M.; Li, Z.L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Wan, Z.M.; Li, Z.L.; Wang, R.; Salomonson, V.; Yves, A.; Bosseno, R.; Hanocq, J. Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca. Remote Sens. Environ. 2002, 80, 497–515. [Google Scholar] [CrossRef]
- Qin, Z.H.; Dall’Olmo, G.; Karnieli, A.; Berliner, P. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high-resolution radiometer data. J. Geophys. Res. Atmos. 2001, 106, 22655–22670. [Google Scholar] [CrossRef]
- Dr. Zhengming Wan’s Group at ICESS, UCSB. The MODIS UCSB Emissivity Library. Available online: https://icess.eri.ucsb.edu/modis/EMIS/html/em.html (accessed on 16 September 2018).
- Becker, F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite. Int. J. Remote Sens. 1987, 8, 1509–1522. [Google Scholar] [CrossRef]
- Cracknell, A.P. The Advanced Very High-Resolution Radiometer; Taylor and Francis, 1997. [Google Scholar]
- López-Valverde, M.A.; López-Puertas, M. A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars: 1. Theoretical basis and nighttime populations of vibrational levels. J. Geophys. Res.-Planets 1994, 99, 13093–13115. [Google Scholar] [CrossRef]
- López-Valverde, M.A.; López-Puertas, M. A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars: 2. Daytime populations of vibrational levels. J. Geophys. Res.-Planets 1994, 99, 13117–13132. [Google Scholar] [CrossRef]
- Chen, S.P. (Ed.) Dictionary of Remote Sensing; China Science Press: Beijing, China, 1990; 1060p. [Google Scholar]
- Saraf, A.K.; Prakash, A.; Sengupta, S.; Gupta, R.P. Landsat-TM data for estimating ground temperature and depth of subsurface coal fire in the Jharia coalfield, India. Int. J. Remote Sens. 1995, 16, 2111–2124. [Google Scholar] [CrossRef]
- Von Clarmann, T.; Dudhia, A.; Edwards, D.P.; Funke, B.; Höpfner, M.; Kerridge, B.; Kostsov, V.; Linden, A.; López-Puertas, M.; Yu, T. Intercomparison of radiative transfer codes under non-local thermodynamic equilibrium conditions. J. Geophys. Res.-Planets 2002, 107, 4631. [Google Scholar] [CrossRef]
- Wang, K.C.; Wan, Z.M.; Wang, P.C.; Sparrow, M.; Liu, J.M.; Zhou, X.J.; Haginoya, S. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.M.; Dozier, J. Effects of the atmosphere and surface emissivity on the TIR spectral signature measured from MODIS-N. In Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA, 20–24 May 1990; pp. 189–192. [Google Scholar]
- Schaaf, C.B.; Strahler, A.H. Solar zenith angle effects on forest canopy hemispherical reflectance calculated with a geometric-optical bidirectional reflectance model. IEEE Trans. Geosci. Remote Sens. 1993, 31, 921–927. [Google Scholar] [CrossRef]
- Nerry, F.; Labed, J.; Stoll, M.P. Emissivity signatures in the thermal IR band for remote sensing: Calibration procedure and method of measurement. Appl. Opt. 1988, 27, 758–764. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens. Environ. 1994, 47, 345–361. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.M.; Zhang, Y.; Feng, Y.Z. Thermal infrared (3–14 μm) bidirectional reflectance measurements of sands and soils. Remote Sens. Environ. 1997, 60, 101–109. [Google Scholar] [CrossRef]
- Mushkin, A.; Balick, L.K.; Gillespie, A.R. Extending surface temperature and emissivity retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote Sens. Environ. 2005, 98, 141–151. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Gillespie, A.R. Simple models for complex natural surfaces: A strategy for the hyperspectral era of remote sensing. In Proceedings of the IEEE International Geosciences Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; pp. 16–21. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2008, 4, 711–715. Available online: http://speclib.jpl.nasa.gov/ (accessed on 10 December 2018). [CrossRef]
- Dash, P.; Gottsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Prata, A.J.; Caselles, V.; Coll, C.; Sobrino, J.A.; Ottlé, C. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sens. Rev. 1995, 12, 175–224. [Google Scholar] [CrossRef]
- Qin, Z.H.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- MODIS Characterization Support Team, National Aeronautics and Space Administration. Available online: https://mcst.gsfc.nasa.gov/calibration/parameters (accessed on 16 September 2018).
- Lord, S.D. A New Software Tool for Computing Earth’s Atmospheric Transmission of Near- and Far-Infrared Radiation; NASA Technical Memorandum 103957; NASA Ames Research Center: Moffett Field, CA, USA, 1992.
- Gemini Observatory. Available online: http://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra (accessed on 16 September 2018).
- Qin, Z.H.; Karnieli, A. Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. Int. J. Remote Sens. 1999, 20, 2367–2393. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Shi, J.; Wang, T.; Ram, K.; Zhao, T. Mathematical Assessment of the Effects of Substituting the Band Radiative Transfer Equation (RTE) for the Spectral RTE in the Applications of Earth’s Surface Temperature Retrievals from Spaceborne Infrared Imageries. Remote Sens. 2019, 11, 226. https://doi.org/10.3390/rs11030226
Liu C, Shi J, Wang T, Ram K, Zhao T. Mathematical Assessment of the Effects of Substituting the Band Radiative Transfer Equation (RTE) for the Spectral RTE in the Applications of Earth’s Surface Temperature Retrievals from Spaceborne Infrared Imageries. Remote Sensing. 2019; 11(3):226. https://doi.org/10.3390/rs11030226
Chicago/Turabian StyleLiu, Chunguang, Jiancheng Shi, Tianxing Wang, Kirpa Ram, and Tianjie Zhao. 2019. "Mathematical Assessment of the Effects of Substituting the Band Radiative Transfer Equation (RTE) for the Spectral RTE in the Applications of Earth’s Surface Temperature Retrievals from Spaceborne Infrared Imageries" Remote Sensing 11, no. 3: 226. https://doi.org/10.3390/rs11030226
APA StyleLiu, C., Shi, J., Wang, T., Ram, K., & Zhao, T. (2019). Mathematical Assessment of the Effects of Substituting the Band Radiative Transfer Equation (RTE) for the Spectral RTE in the Applications of Earth’s Surface Temperature Retrievals from Spaceborne Infrared Imageries. Remote Sensing, 11(3), 226. https://doi.org/10.3390/rs11030226