Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Hydrological Model
Xin’anjiang Model
VIC Model
2.4. Statistical Method
3. Results
3.1. Evaluation of TRMM Precipitation Products
3.2. Hydrologic Model Calibration
3.3. Hydrologic Model Simulation
4. Discussion
5. Conclusions
- (1)
- The 3B42RTV7 (RB = 2.97%, RMSE = 5.69 mm, and CC= 0.79) had better performance than that of 3B42RTV6 (RB = −24.15%, RMSE = 5.98 mm, and CC = 0.72). And the 3B42V7 (RB = 2.95%, RMSE = 5.24 mm, and CC = 0.82) perform better than that of 3B42V6 (RB = 3.60%, RMSE = 5.56 mm, and CC = 0.80) with higher CC and lower RMSE value at daily time scale. For the monthly statistics of satellite rainfall products, the 3B42V6 was observed to achieve all the best indexes of RB (0.01%) and CC (0.95) except RMSE (1.04 mm), and the 3B42V7 was found to attain all the best indexes of RMSE (1.00 mm) and CC (0.95) except RB (1.06%). Overall, the 3B42V6 and 3B42V7 perform better than the 3B42RTV6 and 3B42RTV7.
- (2)
- The 3B42RTV6 and 3B42V7 have good hydrological performance in the streamflow simulation by the VIC and XAJ hydrological models with higher NSCE and CC values. The 3B42RTV6 and 3B42RTV7 demonstrated lower NSCE score (0.50 vs. 0.70). In general, 3B42RTV6 and 3B42RTV7 showed higher CC (>0.8) in simulating stream flow by the VIC and XAJ hydrological model.
- (3)
- The streamflow simulated by the VIC hydrological model driven by the 3B42V7 underestimated by 0.99%, however, it overestimated the stream flow by 23.16% simulated by the XAJ hydrological model. The 3B42V7 generally outperformed 3B42V6 in terms of hydrologic performance, and the VIC hydrological model generally outperformed the XAJ hydrological model with lower RB, higher NSCE, and higher CC values. Of course, the conceptual hydrological model was enough for the hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China. This study provides a reference for the comparison of multiple models on watershed scale.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gourley, J.J.; Vieux, B.E. A Method for Evaluating the Accuracy of Quantitative Precipitation Estimates from a Hydrologic Modeling Perspective. J. Hydrol. 2005, 6, 115–133. [Google Scholar] [CrossRef]
- Gourley, J.J.; Vieux, B.E. A method for identifying sources of model uncertainty in rainfall-runoff simulations. J. Hydrol. 2006, 327, 68–80. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; Mcgavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- McLaughlin, D. An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water. Resour 2002, 25, 1275–1286. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Hong, Y.; Yong, B.; Yang, X.; Yuan, F.; Ma, M. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 2012, 452, 213–225. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.; Yong, B.; Tian, Y.; Zhang, Z.; Shen, Y.; Hu, J.; et al. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. JGR Atmos. 2013, 118, 13060–13074. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Liu, Z. Comparison of versions 6 and 7 3-hourly TRMM multi-satellite precipitation analysis (TMPA) research products. Atmos. Res. 2015, 163, 91–101. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Momin, I.M.; Pai, D.S.; Rajagopal, E.N.; Basu, S. Comparison of TMPA-3B42 Versions 6 and 7 Precipitation Products with Gauge-Based Data over India for the Southwest Monsoon Period. J. Hydrol. 2015, 16, 346–362. [Google Scholar] [CrossRef]
- Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.; Hong, Y.; Chen, X.; Wang, W.; Chen, S.; Gong, L. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87. [Google Scholar]
- Jiang, S.; Zhang, Z.; Huang, Y.; Chen, X.; Chen, S. Evaluating the TRMM Multisatellite Precipitation Analysis for Extreme Precipitation and Streamflow in Ganjiang River Basin, China. Adv. Meteorol. 2017, 2017, 2902493. [Google Scholar] [CrossRef]
- Fei, M.; Zhang, Z.; Yuan, L. Accuracy Assessmant for TRMM in the Poyang Lake Basin. Resour. Environ. Yangtze Basin 2015, 24, 1323–1330, (In Chines with English abstract). [Google Scholar]
- Islam, T.; Rico-Ramirez, M.A.; Han, D.; Srivastava, P.K.; Ishak, A.M. Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J. Atmos. Sol.-Terr. Phys. 2012, 77, 194–208. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Q.; Duan, Z.; Mo, K.; Li, Z.; Tang, G. Multiscale comparative evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products from 2015 to 2017 over a climate transition area of China. Remote Sens. 2018, 10, 944. [Google Scholar] [CrossRef]
- Omranian, E.; Sharif, H.O. Evaluation of the Global Percipitation Measurement (GPM) Satellite Rainfall Products over the Lower Colorad River Basin,TEXAS1. J. Am. Water Resour. 2018, 54, 882–898. [Google Scholar] [CrossRef]
- Omranian, E.; Sharif, H.; Tavakoly, A. How Well Can Global Precipitation Measurement (GPM) Capture Hurricanes? Case Study: Hurricane Harvey. Remote Sens. 2018, 10, 1150. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Tobin, K.J.; Bennett, M.E. Using Swat to Model Streamlow in Two River Basins with Ground and Satellite Precipitaion Data1. J. Am. Water Resour. 2009, 45, 253–271. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Hong, X.; Guo, S.; Xiong, L.; Liu, Z. Spatial and temporal analysis of drought using entropy-based standardized precipitation index: A case study in Poyang Lake basin, China. Appl. Clim. 2015, 122, 543–556. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Li, X. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China. J. Hydrol. 2017, 551, 162–176. [Google Scholar] [CrossRef]
- Shankman, D.; Keim, B.D.; Song, J. Flood frequency in China’s Poyang Lake region: Trends and teleconnections. Int. J. Clim. 2006, 26, 1255–1266. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhang, Z.; Behrangi, A.; Hong, Y.; Gebregiorgis, A.S.; Cao, J.; Hu, B.; Xue, X.; Zhang, X. Hydrologic Evaluation of the TRMM Multisatellite Precipitation Analysis Over Ganjiang Basin in Humid Southeastern China. IEEE. J. 2015, 8, 4568–4580. [Google Scholar] [CrossRef]
- Tang, G.; Zeng, Z.; Long, D.; Guo, X.; Yong, B.; Zhang, W.; Hong, Y. Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7? J. Hydrol. 2016, 17, 121–137. [Google Scholar] [CrossRef]
- Guoqiang, T.; Wei, W.; Ziyue, Z.; Xiaoin, G.; Na, L.; Di, L.; Yang, H. An Overview of the Global Precipitation Measurement (GPM) Mission and It’s Latest Development. Remote Sens. Technol. Appl. 2015, 30, 607–615, (In Chinese with English abstract). [Google Scholar]
- Rozante, J.; Vila, D.; Barboza Chiquetto, J.; Fernandes, A.; Souza Alvim, D. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef]
- Renjun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Liang, X. Two-layer variable infiltration capacity land surface representation for general circulation models. Ph.D. Thesis, Washington University, Washington, DC, USA.
- Wilks, D. International Geophysics; Elsevier: Kidlington, UK, 1995; pp. 2–676. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Lopez-Moreno, J.I.; McCabe, M.F.; Vicente-Serrano, S.M. Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia. Glob. Planet Chang. 2015, 133, 188–200. [Google Scholar] [CrossRef]
- Jiabin, X.; Qinglian, Z.; Qifeng, S.; Xiaoping, L.; Mingli, D. Remote Raman spectral peak searching algorithm based on Kolmogorov-Smirnov test. Chin. J. Sci. Instrum. 2018, 39, 141–147, (In Chines with English abstract). [Google Scholar]
- Makarov, A.A.; Simonova, G.I. Some Properties of Two-Sample Kolmogorov—Smirnov Test in the Case of Contamination of One of the Samples. J. Math. Sci. 2017, 220, 718–723. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Multi-objective global optimization for hydrologic models. J. Hydrol. 1998, 204, 83–97. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Gourley, J.J.; Huffman, G.J.; Tian, Y.; Cao, Q.; Yong, B.; Kirstetter, P.; Hu, J.; Hardy, J.; et al. Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States. Water Resour. Res. 2013, 49, 8174–8186. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Fei, M.; Jin, Q. Hydrological Evaluation of the TMPA Multi-satellite Precipitation Esitimates over the Ganjiang Basin. Resour. Environ. Yangtze Basin 2016, 25, 1618–1625, (In Chines with English abstract). [Google Scholar]
- Zhu, H.; Li, Y.; Huang, Y.; Li, Y.; Hou, C.; Shi, X. Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China. Atmos. Res. 2018, 207, 28–41. [Google Scholar] [CrossRef]
- Nair, S.; Srinivasan, G.; Nemani, R. Evaluation of Multi-Satellite TRMM Derived Rainfall Estimates over a Western State of India. J. Meteorol. Soc. Jpn. 2009, 87, 927–939. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.; Hong, Y.; Wang, J.; Gourley, J.J.; Jiang, S.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, W07519. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Adler, R.F.; Kubota, T.; Ushio, T. Evaluation of GSMaP Precipitation Estimates over the Contiguous United States. J. Hydrol. 2010, 11, 566–574. [Google Scholar] [CrossRef]
- Mei, Y.; Anagnostou, E.N.; Nikolopoulos, E.I.; Borga, M. Error Analysis of Satellite Precipitation Products in Mountainous Basins. J. Hydrol. 2014, 15, 1778–1793. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, A.; Sun, H.; Gui, D.; Xue, J.; Liao, W.; Yan, D.; Zhao, N.; Zeng, X. Error adjustment of TMPA satellite precipitation estimates and assessment of their hydrological utility in the middle and upper Yangtze River Basin, China. Atmos. Res. 2019, 216, 52–64. [Google Scholar] [CrossRef]
Products | Period | Spatial Resolution (°) |
---|---|---|
3B42RTV6 | 2003/01–2010/12 | 0.25 |
3B42V6 | 2003/01–2010/12 | 0.25 |
3B42RTV7 | 2003/01–2010/12 | 0.25 |
3B42V7 | 2003/01–2015/10 | 0.25 |
GPM | 2014/05–2015/10 | 0.1 |
Indices | Formula |
---|---|
Category 1 | |
Relative bias (Bias) | |
Correlation coefficient (CC) | |
Root mean square error (RMSE) | |
Nash-Sutcliffe Coefficient of Efficiency (NSCE) | |
Category 2 | |
Probability of detection (POD) | |
False alarm ratio (FAR) | |
Critical success index (CSI) |
Precipitation Product | Daily | Monthly | ||||
---|---|---|---|---|---|---|
RB (%) | RMSE (mm) | CC | RB (%) | RMSE (mm) | CC | |
3B42RTV6 | −24.15 | 5.98 | 0.72 | −26.25 | 1.96 | 0.86 |
3B42RTV7 | 2.97 | 5.69 | 0.79 | −0.30 | 1.63 | 0.90 |
3B42V6 | 3.60 | 5.56 | 0.80 | −0.01 | 1.04 | 0.95 |
3B42V7 | 2.95 | 5.24 | 0.82 | −1.06 | 1.00 | 0.95 |
Module | Parameter | Description | Value |
---|---|---|---|
Evapotranspiration | Kc | Ratio of potential evapotranspiration to pan evaporation | 0.599 |
Wum | Tension water capacity of upper layer (mm) | 20 | |
Wlm | Tension water capacity of lower layer (mm) | 60 | |
C | Evapotranspiration coefficient of deeper layer | 0.143 | |
Runoff generation | Wm | Tension water capacity (mm) | 131.6 |
B | Exponent of distribution of tension water capacity | 0.899 | |
Im | Ratio of impervious area to the total area of the basin | 0.01 | |
Runoff separation | Sm* | Free water capacity (mm) | 64.654 |
Ex | Exponent of distribution of free water capacity | 0.580 | |
Kg* | Outflow coefficient of free water storage to groundwater | 0.223 | |
Kia | Outflow coefficient of free water storage to interflow | 0.215 | |
Routing | Cg* | Recession constant of groundwater storage | 0.839 |
Ci* | Recession constant of interflow storage | 0.988 | |
Cs*,b | Recession constant in the lag-and-route method | 0.85 | |
Lag*,b | Lag time (h) | 2 | |
Kec | Muskingum time constant for each sub-reach (h) | 1 | |
Xe* | Muskingum weighting factor for each sub-reach | 0.31 |
Parameters | Definition | Value Range | Calibrated Value |
---|---|---|---|
B | Variable infiltration curve parameter (binfilt) | 0.001–1.0 | 0.236 |
Ws | Fraction of maximum soil moisture where non-linear baseflow occurs | ≥0.5 | 0.533 |
Ds | Fraction of Dsmax where non-linear baseflow begins | 0.001–1.0 | 0.481 |
Dsmax | Maximum velocity of baseflow (mm/day) | 0–50 | 13.748 |
d0 | Thickness of each soil moisture layer (m) | 0.1–3.0 | 0.300 |
d1 | 2.430 | ||
d2 | 0.533 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Tian, J.; Huang, Y.; Chen, X.; Chen, S.; Duan, Z. Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China. Remote Sens. 2019, 11, 431. https://doi.org/10.3390/rs11040431
Zhang Z, Tian J, Huang Y, Chen X, Chen S, Duan Z. Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China. Remote Sensing. 2019; 11(4):431. https://doi.org/10.3390/rs11040431
Chicago/Turabian StyleZhang, Zengxin, Jiaxi Tian, Yuhan Huang, Xi Chen, Sheng Chen, and Zheng Duan. 2019. "Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China" Remote Sensing 11, no. 4: 431. https://doi.org/10.3390/rs11040431
APA StyleZhang, Z., Tian, J., Huang, Y., Chen, X., Chen, S., & Duan, Z. (2019). Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China. Remote Sensing, 11(4), 431. https://doi.org/10.3390/rs11040431