Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe
Abstract
:1. Introduction
2. Data and Study Sites
2.1. The 1 km AVHRR Active Fire Product
2.2. Sampling Characteristics of AVHRR
2.3. Selection of Regions
3. Results
3.1. Orbital Drift-Related Changes in Diurnal Sampling
3.2. Temporal Trends in SZA Caused by Orbital Drifting
3.3. Correlation of SZA and Background Temperatures
3.4. Relative Changes in Active Fires
4. Overall Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Latifovic, R.; Pouliot, D.; Dillabaugh, C. Identification and correction of systematic error in NOAA AVHRR long-term satellite data record. Remote Sens. Environ. 2012, 127, 84–97. [Google Scholar] [CrossRef]
- Cracknell, A.P. The Advanced Very High Resolution Radiometer (AVHRR); CRC Press, Taylor & Francis Ltd.: London, UK, 1997; pp. 1–534. [Google Scholar]
- Rao, C.R.N. Pre-Launch Calibration of Channels 1 and 2 of the Advanced Very High Resolution Radiometer—NOAA Technical Report NESDIS 36; Satellite Research Laboratory, National Environmental Satellite, Data, and Information Service: Washington, DC, USA, 1987; pp. 1–62. [Google Scholar]
- Heidinger, A.K.; Straka, W.C.; Molling, C.C.; Sullivan, J.T.; Wu, X. Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens. 2010, 31, 6493–6517. [Google Scholar] [CrossRef]
- Privette, J.; Fowler, C.; Wick, G.; Baldwin, D.; Emery, W. Effects of orbital drift on advanced very high resolution radiometer products: Normalized difference vegetation index and sea surface temperature. Remote Sens. Environ. 1995, 53, 164–171. [Google Scholar] [CrossRef]
- Brunel, P.; Marsouin, A. Operational AVHRR navigation results. Int. J. Remote Sens. 2000, 21, 951–972. [Google Scholar] [CrossRef]
- Price, J.C. Timing of NOAA afternoon passes. Int. J. Remote Sens. 1991, 12, 193–198. [Google Scholar] [CrossRef]
- Gutman, G.G. On the monitoring of land surface temperatures with the NOAA/ AVHRR: Removing the effect of satellite orbit drift. Int. J. Remote Sens. 1999, 20, 3407–3413. [Google Scholar] [CrossRef]
- Ignatov, A.; Laszlo, I.; Harrod, E.D.; Kidwell, K.B.; Goodrum, G.P. Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int. J. Remote Sens. 2004, 25, 5255–5266. [Google Scholar] [CrossRef]
- John, V.O.; Holl, G.; Buehler, S.A.; Candy, B.; Saunders, R.W.; Parker, D.E. Understanding intersatellite biases of microwave humidity sounders using global simultaneous nadir overpasses. J. Geophys. Res. Atmos. 2012, 117, 1–13. [Google Scholar] [CrossRef]
- Gutman, G.G.; Masek, J.G. Long-term time series of the Earth’s land-surface observations from space. Int. J. Remote Sens. 2012, 33, 4700–4719. [Google Scholar] [CrossRef]
- Devasthale, A.; Karlsson, K.G.; Quaas, J.; Grassl, H. Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function. Atmos. Meas. Tech. 2012, 5, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Brown, J.F. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics. Int. J. Appl. Earth Observ. Geoinform. 2017, 62, 215–223. [Google Scholar] [CrossRef]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kehrwald, N.M.; Whitlock, C.; Barbante, C.; Brovkin, V.; Daniau, A.L.; Kaplan, J.O.; Marlon, J.R.; Power, M.J.; Thonicke, K.; van der Werf, G.R. Fire Research: Linking Past, Present, and Future Data. Eos Trans. Am. Geophys. Union 2013, 94, 421–422. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013—The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Giglio, L. Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sens. Environ. 2007, 108, 407–421. [Google Scholar] [CrossRef]
- Csiszar, I.A. Interannual changes of active fire detectability in North America from long-term records of the advanced very high resolution radiometer. J. Geophys. Res. 2003, 108, 4075. [Google Scholar] [CrossRef]
- Plank, S.; Fuchs, E.m.; Frey, C. A Fully Automatic Instantaneous Fire Hotspot Detection Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor. Remote Sens. 2017, 9, 30. [Google Scholar] [CrossRef]
- Weber, H.; Wunderle, S. A 30 year AVHRR active fire product of Europe: Algorithm & accuracy assessment. Remote Sens. Environ. 2019, in press. [Google Scholar]
- Eva, H.; Lambin, E.F. Remote Sensing of Biomass Burning in Tropical Regions: Sampling Issues and Multisensor Approach. Remote Sens. Environ. 1998, 64, 292–315. [Google Scholar] [CrossRef]
- Hüsler, F.; Fontana, F.; Neuhaus, C.; Riffler, M.; Musial, J.P.; Wunderle, S. AVHRR Archive and Processing Facility at the University of Bern: A comprehensive 1-km satellite data set for climate change studies. EARSeL Proc. 2011, 10, 83–101. [Google Scholar]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Giglio, L.; Kendall, J.D.; Justice, C.O. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int. J. Remote Sens. 1999, 20, 1947–1985. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.P.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y.J. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Robinson, J.M. Fire from space: Global fire evaluation using infrared remote sensing. Int. J. Remote Sens. 1991, 12, 3–24. [Google Scholar] [CrossRef]
- Csiszar, I.A.; Sullivan, J. Recalculated pre-launch saturation temperatures of the AVHRR 3.7 μm sensors on board the TIROS-N to NOAA-14 satellites. Int. J. Remote Sens. 2002, 23, 5271–5276. [Google Scholar] [CrossRef]
- McGregor, J.; Gorman, A.J. Some considerations for using AVHRR data in climatological studies: I. Orbital characteristics of NOAA satellites. Int. J. Remote Sens. 1994, 15, 537–548. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire-climate relationship: Evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Camia, A. Mapping the Impacts of Recent Natural Disasters and Technological Accidents in Europe—An Overview of the Last Decade; European Environment Agency: Copenhagen, Denmark, 2010; pp. 47–53. [Google Scholar]
- Chuvieco, E.; Giglio, L.; Justice, C.O. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Heymann, Y.; Steenmans, C.; Croisille, G.; Bossard, M.; Lenco, M.; Wyatt, B.; Weber, J.L.; O’Brian, C.; Cornaert, M.H.; Nicolas, S. Corine Land Cover Technical Guide, Part I.; Office for Official Publications of the European Communities: Luxemburg, 1994. [Google Scholar]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Agricultural and Forest Meteorology Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol. 2012, 156, 41–53. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Turco, M.; Bedia, J.; Di Liberto, F.; Fiorucci, P.; von Hardenberg, J.; Koutsias, N.; Llasat, M.C.; Xystrakis, F.; Provenzale, A. Decreasing Fires in Mediterranean Europe. PLoS ONE 2016, 11, e0150663. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Libertà, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneer, P.; et al. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System ( EFFIS ). In Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts; Tiefenbacher, J., Ed.; IntechOpen: London, UK, 2012; pp. 87–108. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Larjavaara, M.; Pennanen, J.; Tuomi, T.J. Lightning that ignites forest fires in Finland. Agric. For. Meteorol. 2005, 132, 171–180. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; p. 813. [Google Scholar]
- Langaas, S. Temporal and Spatial Distribution of Savanna Fires in Senegal and the Gambia, West Africa, 1989-90, Derived From Multi-Temporal AVHRR Night Images. Int. J. Wildl. Fire 1992, 2, 21. [Google Scholar] [CrossRef]
- Trishchenko, A.P. Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16. J. Geophys. Res. 2002, 107, 4778. [Google Scholar] [CrossRef]
- Pinzón, J.E.; Brown, M.E.; Tucker, C.J. EMD Correction of orbital drift artifacts in satellite data stream. In Hilbert-Huang Transform and Its Applications; Huang, N.E., Shen, S.S., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2014; pp. 241–260. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Atitar, M.; Nerry, F. NOAA-AVHRR Orbital Drift Correction From Solar Zenithal Angle Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4014–4019. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Region | Biome | Characteristics |
---|---|---|
1 | Mediterranean Forests, Woodlands & Scrub | Arable land, permanent crops, semi-deciduous forests |
2 | Mediterranean Forests, Woodlands & Scrub | Mountain mixed forests, pastures and mosaics |
3 | Temperate Broadleaf & Mixed Forests | Pastures and mosaics, mixed forests, scrub |
4 | Temperate Broadleaf & Mixed Forests | Arable land, permanent crops, pastures, mixed forests |
5 | Boreal Forests/Taiga | Forest, arable land |
Satellite | Region | BT3/SZA (K deg) | BT4/SZA (K deg) | BT34/SZA (K deg) | SZA Trend (deg year) | Calc. Trend | ||
---|---|---|---|---|---|---|---|---|
(K year) | (K year) | (K year) | ||||||
NOAA-09 | 1 | −0.68 *** | −0.63 *** | −0.04 *** | 4.92 * | −3.34 | −3.11 | −0.22 |
2 | −0.50 *** | −0.44 *** | −0.06 *** | 6.37 ** | −3.24 | −2.83 | −0.40 | |
3 | −0.45 *** | −0.40 *** | −0.05 *** | 4.94 * | −2.26 | −2.01 | −0.25 | |
4 | −0.63 *** | −0.54 *** | −0.08 *** | 5.90 * | −3.71 | −3.2 | −0.47 | |
5 | −0.65 *** | −0.61 *** | −0.03 *** | 3.67 * | −2.38 | −2.24 | −0.14 | |
NOAA-11 | 1 | −0.59 *** | −0.51 *** | −0.08 *** | 6.88 *** | −4.11 | −3.55 | −0.56 |
2 | −0.51 *** | −0.44 *** | −0.07 *** | 6.21 ** | −3.21 | −2.75 | −0.46 | |
3 | −0.50 *** | −0.43 *** | −0.07 *** | 5.74 *** | −2.88 | −2.48 | −0.40 | |
4 | −0.62 *** | −0.53 *** | −0.08 *** | 5.17 ** | −3.23 | −2.78 | −0.45 | |
5 | −0.61 *** | −0.56 *** | −0.04 *** | 2.67 ** | −1.64 | −1.51 | −0.12 | |
NOAA-14 | 1 | −0.59 *** | −0.49 *** | −0.09 *** | 5.74 *** | −3.41 | −2.84 | −0.56 |
2 | −0.48 *** | −0.39 *** | −0.09 *** | 7.07 *** | −3.41 | −2.77 | −0.64 | |
3 | −0.43 *** | −0.35 *** | −0.07 *** | 4.78 *** | −2.06 | −1.70 | −0.36 | |
4 | −0.59 *** | −0.51 *** | −0.07 *** | 6.26 *** | −3.69 | −3.20 | −0.48 | |
5 | −0.62 *** | −0.55 *** | −0.06 *** | 3.58 ** | −2.23 | −1.98 | −0.24 | |
NOAA-16 | 1 | −0.73 *** | −0.65 *** | −0.07 *** | 3.92 *** | −2.87 | −2.58 | −0.29 |
2 | −0.60 *** | −0.55 *** | −0.05 *** | 3.31 *** | −1.98 | −1.82 | −0.16 | |
3 | −0.49 *** | −0.42 *** | −0.06 *** | 3.55 *** | −1.75 | −1.51 | −0.24 | |
4 | −0.70 *** | −0.64 *** | −0.06 *** | 2.83 *** | −2.00 | −1.82 | −0.18 | |
5 | −0.64 *** | −0.55 *** | −0.08 *** | 0.26 *** | −0.16 | −0.14 | −0.02 | |
NOAA-18 | 1 | −0.61 *** | −0.52 *** | −0.09 *** | 3.64 *** | −2.22 | −1.88 | −0.34 |
2 | −0.48 *** | −0.40 *** | −0.08 *** | 4.68 *** | −2.26 | −1.89 | −0.38 | |
3 | −0.42 *** | −0.36 *** | −0.06 *** | 3.04 ** | −1.28 | −1.09 | −0.19 | |
4 | −0.57 *** | −0.49 *** | −0.08 *** | 4.29 *** | −2.45 | −2.10 | −0.35 | |
5 | −0.61 *** | −0.53 *** | −0.07 *** | 2.44 *** | −1.48 | −1.30 | −0.18 | |
NOAA-19 | 1 | −0.67 *** | −0.61 *** | −0.07 *** | 1.03 * | −0.69 | −0.63 | −0.07 |
2 | −0.56 *** | −0.50 *** | −0.06 *** | 1.03 | −0.57 | −0.51 | −0.06 | |
3 | −0.45 *** | −0.41 *** | −0.04 *** | 0.82 * | −0.37 | −0.33 | −0.03 | |
4 | −0.68 *** | −0.62 *** | −0.06 *** | 0.92 | −0.63 | −0.57 | −0.06 | |
5 | −0.65 *** | −0.59 *** | −0.07 *** | 0.43 * | −0.28 | −0.25 | −0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, H.; Wunderle, S. Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe. Remote Sens. 2019, 11, 467. https://doi.org/10.3390/rs11040467
Weber H, Wunderle S. Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe. Remote Sensing. 2019; 11(4):467. https://doi.org/10.3390/rs11040467
Chicago/Turabian StyleWeber, Helga, and Stefan Wunderle. 2019. "Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe" Remote Sensing 11, no. 4: 467. https://doi.org/10.3390/rs11040467
APA StyleWeber, H., & Wunderle, S. (2019). Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe. Remote Sensing, 11(4), 467. https://doi.org/10.3390/rs11040467