Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landsat 8 OLI Data
2.2. AERONET-OC Data
2.3. Match-Up Exercise
2.4. Data Processing
2.4.1. Description of Atmospheric Correction Algorithms
2.4.2. Atmospheric Correction Procedure and Validation
3. Results and Discussion
3.1. Validation of AC Algorithms
3.2. Inter-Comparison of Reflectance Spectra at Each Site
3.3. Influence of Environmental Factors for SeaDAS and ACOLITE
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Landsat Scene ID | Site |
---|---|
[‘LC81810302014141LGN00’ | Galata |
[‘LC81810302014253LGN00’ | Galata |
[‘LC81810302015240LGN00’ | Galata |
[‘LC81810302015352LGN00’ | Galata |
[‘LC81800292014086LGN00’ | Gloria |
[‘LC81800292014358LGN00’ | Gloria |
[‘LC81800292015041LGN00’ | Gloria |
[‘LC81800292015361LGN00’ | Gloria |
[‘LC81280542014026LGN00’ | GOT_Seaprism |
[‘LC81920192013151LGN00’ | Gustav_Dalen_Tower |
[‘LC81880182013235LGN00’ | Helsinki_Lighthouse |
[‘LC81880182014190LGN00’ | Helsinki_Lighthouse |
[‘LC81880182016180LGN00’ | Helsinki_Lighthouse |
[‘LC81880182016228LGN00’ | Helsinki_Lighthouse |
[‘LC81880182016260LGN00’ | Helsinki_Lighthouse |
[‘LC80200312016219LGN00’ | Lake_Erie |
[‘LC80200312016235LGN00’ | Lake_Erie |
[‘LC80130322013273LGN00’ | LISCO |
[‘LC80130322014004LGN00’ | LISCO |
[‘LC80130322015023LGN00’ | LISCO |
[‘LC80130322015279LGN00’ | LISCO |
[‘LC80130322016266LGN00’ | LISCO |
[‘LC80110312013291LGN00’ | MVCO |
[‘LC80110312014038LGN00’ | MVCO |
[‘LC80110312014150LGN00’ | MVCO |
[‘LC80110312015025LGN00’ | MVCO |
[‘LC80110312014086LGN00’ | MVCO |
[‘LC81950192013156LGN00’ | Palgrunden |
[‘LC81950192016165LGN00’ | Palgrunden |
[‘LC81990242016129LGN00’ | Thornton_C-power |
[‘LC81990242016305LGN00’ | Thornton_C-power |
[‘LC80410372014312LGN00’ | USC_SEAPRISM |
[‘LC80410372016222LGN00’ | USC_SEAPRISM_2 |
[‘LC80410372016318LGN00’ | USC_SEAPRISM_2 |
[‘LC80410372016334LGN00’ | USC_SEAPRISM_2 |
[‘LC81920292014106LGN00’ | Venise |
[‘LC81920292015013LGN00’ | Venise |
[‘LC81920292015221LGN00’ | Venise |
[‘LC81920292016016LGN00’ | Venise |
[‘LC81920292016128LGN00’ | Venise |
[‘LC81920292016192LGN00’ | Venise |
[‘LC81920292016240LGN00’ | Venise |
[‘LC80220402013240LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402013320LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402014019LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402014291LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402014323LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402015038LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402015342LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402016009LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402016041LGN00’ | WaveCIS_Site_CSI |
[‘LC80220402016073LGN00’ | WaveCIS_Site_CSI |
[‘LC81990242014091LGN00’ | Zeebrugge-MOW1 |
[‘LC81990242014219LGN00’ | Zeebrugge-MOW1 |
Station Date | SZA (0) | AOT 869 (nm) | Wind Speed (m/s) | Chlorophyll-a (mg/m3) |
---|---|---|---|---|
Galata_2014141 | 27.68254 | 0.061308 | 4.109681 | 1.15 |
Galata_2014253 | 41.58995 | 0.116449 | 3.284061 | 1.10 |
Galata_2015240 | 37.50297 | 0.058537 | 2.129808 | 0.73 |
Galata_2015352 | 68.64532 | 0.191727 | 4.643727 | 0.62 |
Gloria_2014086 | 45.39897 | 0.039736 | 1.40709 | 1.03 |
Gloria_2014358 | 69.93295 | 0.009096 | 13.20025 | 2.28 |
Gloria_2015041 | 62.24466 | 0.011158 | 9.488579 | 1.64 |
Gloria_2015361 | 70.11336 | 0.01644 | 8.966497 | 1.31 |
Got_2014026 | 39.26405 | 0.184762 | 2.348026 | 0.81 |
Gustav_2013151 | 37.76921 | 0.045492 | 7.765895 | 1.44 |
Helsinki_2013235 | 49.6655 | 0.045049 | 7.813921 | 4.11 |
Helsinki_2014190 | 38.82244 | 0.052049 | 5.058227 | 5.19 |
Helsinki_2016180 | 38.00992 | 0.036343 | 3.183139 | 3.87 |
Helsinki_2016228 | 47.29317 | 0.015965 | 5.356986 | 3.00 |
Helsinki_2016260 | 58.31484 | 0.014555 | 7.385065 | 3.66 |
LakeErie_2016219 | 31.06475 | 0.036835 | 4.838009 | 5.32 |
LakeErie_2016235 | 35.04874 | 0.032271 | 2.098577 | 5.84 |
LISCO_2013273 | 45.86886 | 0.02143 | 6.629846 | 6.12 |
LISCO_2014004 | 65.76056 | 0.009206 | 3.691909 | 3.92 |
LISCO_2015023 | 63.25687 | 0.01911 | 5.097444 | 5.36 |
LISCO_2015279 | 48.07922 | 0.025828 | 6.469751 | 4.84 |
LISCO_2016266 | 43.53788 | 0.03848 | 4.592692 | 4.06 |
MVCO_2013291 | 53.30351 | 0.016554 | 8.056089 | 3.24 |
MVCO_2014038 | 60.57072 | 0.025061 | 6.897844 | 4.52 |
MVCO_2014086 | 43.2755 | 0.042702 | 8.934463 | 4.96 |
MVCO_2014150 | 25.55208 | 0.054678 | 2.590076 | 1.50 |
MVCO_2015025 | 64.20812 | 0.036832 | 10.15678 | 5.03 |
Palgrunden_2013156 | 37.03093 | 0.01894 | 3.94127 | 7.58 |
Palgrunden_2016165 | 36.71529 | 0.013707 | 0.5948 | 6.87 |
Thornton_2016129 | 36.60009 | 0.070453 | 7.756932 | 16.3 |
Thornton_2016305 | 66.8652 | 0.058625 | 2.756128 | 3.24 |
USCSeaPrism_2014312 | 52.58024 | 0.028872 | 4.974118 | 0.22 |
USCSeaPrism_2016222 | 37.88999 | 0.074677 | 3.123159 | 0.63 |
USCSeaPrism_2016318 | 54.05641 | 0.027335 | 3.450807 | 0.30 |
USCSeaPrism_2016334 | 57.61152 | 0.026866 | 3.217656 | 0.61 |
Venise_2014106 | 37.88999 | 0.023221 | 6.324373 | 3.41 |
Venise_2015013 | 68.62708 | 0.039125 | 3.700884 | 1.19 |
Venise_2015221 | 33.40939 | 0.125445 | 3.092528 | 0.78 |
Venise_2016016 | 68.39465 | 0.011226 | 6.740557 | 0.58 |
Venise_2016128 | 31.50274 | 0.03962 | 1.123216 | 1.01 |
Venise_2016192 | 27.88954 | 0.085338 | 1.76539 | 1.59 |
Venise_2016240 | 38.46594 | 0.033166 | 1.342931 | 1.87 |
WaveCIS_2013240 | 28.31299 | 0.080524 | 3.036319 | 2.15 |
WaveCIS_2013320 | 50.72926 | 0.069036 | 6.575934 | 2.20 |
WaveCIS_2014019 | 54.4896 | 0.03491 | 7.112117 | 3.99 |
WaveCIS_2014291 | 42.45005 | 0.016669 | 3.183118 | 1.55 |
WaveCIS_2014323 | 51.5107 | 0.016451 | 2.907233 | 1.53 |
WaveCIS_2015038 | 50.60994 | 0.022994 | 2.271182 | 1.80 |
WaveCIS_2015342 | 55.17512 | 0.033926 | 1.131623 | 3.37 |
WaveCIS_2016009 | 56.01941 | 0.072489 | 4.151914 | 3.19 |
WaveCIS_2016041 | 49.98228 | 0.008506 | 5.38026 | 3.97 |
WaveCIS_2016073 | 39.38958 | 0.052527 | 5.027627 | 2.76 |
Zeebruge_2014091 | 49.09826 | 0.093231 | 2.259445 | 3.42 |
Zeebruge_2014219 | 37.90776 | 0.13111 | 3.071374 | 4.11 |
ACOLITE | LaSRC | SeaDAS | |||
---|---|---|---|---|---|
561 nm | USC Seaprism: 2016222 | 443 nm | WaveCIS: 2013320 | 443 nm | Palgrunden: 2013156 |
655 nm | Gloria: 2014358 USC Seaprism: 2016222 | 655 nm | WaveCIS: 2013320 MVCO: 2014150 | 655 nm | GOT Seaprism: 2014026 USC Seaprism: 2016222 Venise: 2015221 |
References
- Cracknell, A.P.; Newcombe, S.K.; Black, A.F.; Kirby, N.E. The ABDMAP (Algal Bloom Detection, Monitoring and Prediction) Concerted Action. Int. J. Remote Sens. 2001, 22, 205–247. [Google Scholar] [CrossRef]
- Pe’eri, S.; Parrish, C.; Azuike, C.; Alexander, L.; Armstrong, A. Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness. Mar. Geod. 2014, 37, 293–314. [Google Scholar] [CrossRef]
- Dekker, A.G.; Brando, V.E.; Anstee, J.M. Retrospective Seagrass Change Detection in a Shallow Coastal Tidal Australian Lake. Remote Sens. Environ. 2005, 97, 415–433. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. Coral Reef Habitat Mapping: How Much Detail Can Remote Sensing Provide? Mar. Biol. 1997, 130, 193–202. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443. [Google Scholar] [CrossRef] [PubMed]
- Antoine, D.; Morel, A. A Multiple Scattering Algorithm for Atmospheric Correction of Remotely Sensed Ocean Colour (MERIS Instrument): Principle and Implementation for Atmospheres Carrying Various Aerosols Including Absorbing Ones. Int. J. Remote Sens. 1999, 20, 1875–1916. [Google Scholar] [CrossRef]
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Colour Radiometry. Available online: https://oceancolor.gsfc.nasa.gov/docs/technical/NASA-TM-2016-217551.pdf (accessed on 18 February 2019).
- IOCCG. Remote Sensing of Ocean. Colour in Coastal, and Other Optically-Complex. Waters; Sathyendranath, S., Ed.; Reports of the International Ocean-Colour Coordinating Group (IOCCG); IOCCG: Dartmouth, NS, Canada, 2000. [Google Scholar]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric Correction of Satellite Ocean Colour Imagery: The Black Pixel Assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M. An Assessment of the Black Ocean Pixel Assumption for MODIS SWIR Bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR Combined Atmospheric Correction Approach for MODIS Ocean Colour Data Processing. Opt. Exp. 2007, 15, 15722–15733. [Google Scholar] [CrossRef]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Colour Data Processing. Opt. Exp. 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of Four Atmospheric Correction Algorithms for MODIS-Aqua Images over Contrasted Coastal Waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Jamet, C.; Loisel, H.; Kuchinke, C.P.; Ruddick, K.; Zibordi, G.; Feng, H. Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sens. Environ. 2011, 115, 1955–1965. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Gren, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Hedley, J.; Roelfsema, C.; Koetz, B.; Phinn, S. Capability of the Sentinel 2 Mission for Tropical Coral Reef Mapping and Coral Bleaching Detection. Remote Sens. Environ. 2012, 120, 145–155. [Google Scholar] [CrossRef]
- Franz, B.A.; Bailey, S.; Kuring, N.; Werdell, P.J. Ocean Colour Measurements with the Operational Land Imager on Landsat-8: Implementation and Evaluation in SeaDAS. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef]
- Wei, J.; Lee, Z.; Garcia, R.; Zoffoli, L.; Armstrong, R.A.; Shang, Z.; Sheldon, P.; Chen, R.F. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sens. Environ. 2018, 215, 18–32. [Google Scholar] [CrossRef]
- Clewley, D.; Bunting, P.; Shepherd, J.; Gillingham, S.; Flood, N.; Dymond, J.; Lucas, R.; Armston, J.; Moghaddam, M. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sens. 2014, 6, 6111–6135. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q.; Ruddick, K. Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- USGS. Product Guide: Landsat 8 Surface Reflectance Code (LASRC) Product, 2017. Available online: https://doi.org/10.1080/1073161X.1994.10467258 (accessed on 18 February 2019).
- Vermote, E.F.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016. [Google Scholar] [CrossRef]
- Gerace, A.D.; Schott, J.R.; Nevins, R. Increased Potential to Monitor Water Quality in the Near-Shore Environment with Landsat’s next-Generation Satellite. J. Appl. Remote Sens. 2013, 7, 073558. [Google Scholar] [CrossRef]
- Zibordi, G.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Mélin, H.; Berthon, J.F. AERONET-OC: A Network for the Validation of Ocean Colour Primary Products. J. Atmos. Ocean. Tech. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F. An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res. 2001, 106, 12067. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, T.; Nakajima, F. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Simon, P.C.; Labs, D.; Mandel, H.; Gillotay, D.; Foujols, T. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the ATLAS and EURECA Missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Bailey, S.; Franz, A.; Werdell, J. A Multi-Sensor Approach for the on-Orbit Validation of Ocean Colour Satellite Data Products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Wicks, D.J.; Jarman, M. S2 ARD Project Briefing Document. 2017. Available online: https://media.sa.catapult.org.uk/wp-content/uploads/2017/09/14123619/Sentinel-2-ARD-Project-Summary_final.pdf (accessed on 22 February 2018).
- Wilson, R.T. Py6S: A Python Interface to the 6S Radiative Transfer Model. Comput. Geosci. 2013, 51, 166–171. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Landsat-8 As a Precursor to Sentinel-2: Observations of Human Impacts in Coastal Waters. In Proceedings of the Sentinel-2 for Science Workshop, Frascati, Italy, 20–23 May 2014. [Google Scholar]
- Shettle, E.P.; Fenn, R.W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. Environ. Res. 1979, 676. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Wang, Y.; Liu, L.; Hu, Y.; Li, D.; Li, Z.; Wang, Y. Development and Validation of the Landsat-8 Surface Reflectance Products Using a MODIS-Based per-Pixel Atmospheric Correction Method Atmospheric Correction Method. Int. J. Remote Sens. 2016, 37, 1291–1314. [Google Scholar] [CrossRef]
- Wang, Z.; Erb, A.M.; Schaaf, C.B.; Sun, Q.; Liu, Y.; Yang, Y.; Shuai, Y.; Casey, K.A.; Román, M.O. Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data. Remote Sens. Environ. 2015, 185, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, F.; Mattiuzzi, M.; Atzberger, C. Comparison of the Landsat Surface Reflectance Climate Data Record (CDR) and Manually Atmospherically Corrected Data in a Semi-Arid European Study Area. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 1–10. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Huang, C.; Masek, J.G.; Vermote, E.F.; Gao, F.; Narasimhan, R.; Channan, S.; Wolfe, R.E.; Townshend, J.R. Global Surface Reflectance Products from Landsat: Assessment Using Coincident MODIS Observations. Remote Sens. Environ. 2013, 134, 276–293. [Google Scholar] [CrossRef]
- Ahmad, Z.; Franz, B.; McClain, C.; Kwiatkowska, E.; Werdell, J.; Shettle, E.; Holben, B. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans. Appl. Opt. 2010, 49, 5545–5556. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Wang, M. Influence of Oceanic Whitecaps on Atmospheric Correction of Ocean-Colour Sensors. Appl. Opt. 1994, 33, 7754. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, N.; Smith, B.; Binding, C.; O’Donnell, D.M. Spectral Band Adjustments for Remote Sensing Reflectance Spectra in Coastal/Inland Waters. Opt. Exp. 2017, 25, 28650–28667. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G. Band Shifting for Ocean Colour Multi-Spectral Reflectance Data. Opt. Exp. 2015, 23, 2262–2279. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, N.; Roger, J.; Ahmad, Z. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. Opt. Exp. 2107, 25, 6015–6035. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- De Maerschalck, B.; Vanlede, J. Zeebrugge Harbour Sediment Transport Model. Coast. Dyn. 2013, 477–486. [Google Scholar]
- Amin, R.; Gilerson, A.; Zhou, J.; Gross, B.; Moshary, F.; Ahmed, S. Impacts of Atmospheric Corrections on Algal Bloom Detection Techniques. In Proceedings of the Eighth Conference on Coastal Atmospheric, Oceanic Prediction, Phoenix, AZ, USA, 11–15 January 2009. [Google Scholar]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J. Aerosol Optical Thickness and Atmospheric Path Radiance. J. Geophys. Res. 1993, 98, 2677–2692. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.F. Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Bailey, S.; Franz, B.; Shea, D. Atmospheric Correction of Landsat-8 Imagery Using Seadas. In Proceedings of the Sentinel-2 for Science Workshop, Frascati, Italy, 20–23 May 2014. [Google Scholar]
Band centres (nm) | |||||||
MODIS | 443 | 488 | 555 | 645 | 858 | 1640 | 2130 |
SeaWiFS | 443 | 490 | 555 | 670 | 865 | NA | NA |
OLI | 443 | 482 | 56 | 655 | 865 | 1609 | 2201 |
Signal-to-noise ratio (SNR) | |||||||
MODIS | 838 | 802 | 228 | 128 | 201 | 275 | 110 |
SeaWiFS | 950 | 1000 | 850 | 500 | 350 | NA | NA |
OLI | 344 | 478 | 279 | 144 | 67 | 30 | 14 |
Ltyp (w m−2 µ−1 sr−) | |||||||
MODIS | 4.9 | 32.1 | 29 | 21.8 | 24.7 | 7.3 | 1.0 |
SeaWiFS | 70.2 | 53.1 | 33.9 | 8.3 | 4.5 | NA | NA |
OLI | 69.8 | 55.3 | 27.5 | 13.4 | 4.06 | 0.353 | 0.0467 |
R2 | Slope | RMSE (1/sr) | Intercept | p-Values | |
---|---|---|---|---|---|
Rrs 443 | |||||
ARCSI | 0.43 (0.41) | 0.91 (0.89) | 0.0085 (0.0085) | 0.0080 (0.0084) | 8.92e-08 |
ACOLITE | 0.70 (0.68) | 0.97 (0.97) | 0.0039 (0.0039) | 0.0036 (0.0037) | 4.16e-15 |
LaSRC | 0.05 (0.05) | 0.23 (0.25) | 0.0042 (0.0042) | 0.0050 (0.0050) | 0.11 |
SeaDAS | 0.84 (0.84) | 1.08 (1.08) | 0.0013 (0.0013) | −0.0006 (−0.0006) | 2.36e-22 |
Rrs 482 | |||||
ARCSI | 0.68 (0.63) | 1.01 (0.92) | 0.0065 (0.0063) | 0.0060 (0.0061) | 2.00e-13 |
ACOLITE | 0.85 (0.79) | 1.03 (0.94) | 0.0032 (0.0031) | 0.0027 (0.0029) | 1.99e-14 |
LaSRC | 0.44 (0.43) | 0.60 (0.56) | 0.0035 (0.0035) | 0.0041 (0.0041) | 3.77e-08 |
SeaDAS | 0.92 (0.87) | 1.09 (1.00) | 0.0012 (0.0015) | −0.0002 (0.00009) | 5.44e-30 |
Rrs 561 | |||||
ARCSI | 0.77 (0.77) | 0.95 (0.97) | 0.0051 (0.0048) | 0.0046 (0.0042) | 5.27e-18 |
ACOLITE | 0.92 (0.87) | 1.00 (0.98) | 0.0016 (0.0019) | 0.0005 (0.0002) | 1.38e-29 |
LaSRC | 0.80 (0.78) | 0.83 (0.83) | 0.0030 (0.0029) | 0.0027 (0.0025) | 9.48e-20 |
SeaDAS | 0.95 (0.92) | 1.03 (1.21) | 0.0012 (0.0011) | 0.00005 (−0.0003) | 1.13e-34 |
Rrs 665 | |||||
ARCSI | 0.64 (0.63) | 0.91 (1.06) | 0.0033 (0.0034) | 0.0028 (0.0026) | 4.49e-13 |
ACOLITE | 0.93 (0.89) | 0.98 (1.13) | 0.0010 (0.0013) | 0.0006 (0.0005) | 1.91e-31 |
LaSRC | 0.52 (0.50) | 0.65 (0.75) | 0.0022 (0.0021) | 0.0011 (0.0010) | 8.39e-10 |
SeaDAS | 0.97 (0.92) | 1.01 (1.21) | 0.0005 (0.0011) | −0.0001 (−0.0003) | 4.00e-40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilori, C.O.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. https://doi.org/10.3390/rs11040469
Ilori CO, Pahlevan N, Knudby A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sensing. 2019; 11(4):469. https://doi.org/10.3390/rs11040469
Chicago/Turabian StyleIlori, Christopher O., Nima Pahlevan, and Anders Knudby. 2019. "Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing" Remote Sensing 11, no. 4: 469. https://doi.org/10.3390/rs11040469
APA StyleIlori, C. O., Pahlevan, N., & Knudby, A. (2019). Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sensing, 11(4), 469. https://doi.org/10.3390/rs11040469