Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Airborne Lidar
2.3. Classification of Saltmarsh Components with Airborne Lidar
2.4. Terrestrial Lidar
2.5. Volume and Surface Area Estimates from Lidar
2.6. Ground Spectroscopy
2.7. Airborne Imagery
2.8. Tidal Height
2.9. Airborne and Terrestrial Lidar Hybrid Model
2.10. Assessment of Hydrological Features
3. Results
3.1. Classification and Representation of Saltmarsh Components
3.2. Comparison to Landsat
3.3. Simulation of Airborne Geomorphology Retrievals
4. Discussion
4.1. Airborne Lidar Characterization of Saltmarsh Features
4.2. Limitations of the Study
4.2.1. Validation
4.2.2. Precedence in Classifications
4.2.3. Scope of Inference
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Date (dd/mm/yy) | Total Area (m2) | Additional Area (m2) | Total Volume (m3) | Additional Volume (m3) |
---|---|---|---|---|
05/14/15 | 1183.25 | 0 | 223.05 | 0 |
05/24/15 | 1439 | 255.75 | 311.02 | 87.97 |
06/04/15 | 1643.5 | 204.5 | 382.61 | 71.59 |
06/10/15 | 1756.25 | 112.75 | 423.52 | 40.91 |
06/17/15 | 1861 | 104.75 | 471.51 | 47.99 |
06/25/15 | 1915.5 | 54.5 | 506.47 | 34.96 |
07/03/15 | 1954.25 | 38.75 | 544.54 | 38.07 |
07/11/15 | 2042.75 | 88.5 | 578.68 | 34.13 |
07/19/15 | 2151.5 | 108.75 | 642.46 | 63.78 |
08/12/15 | 2230.25 | 78.75 | 678.89 | 36.43 |
08/28/15 | 2265.5 | 35.25 | 726.83 | 47.94 |
09/21/15 | 2343 | 77.5 | 770.52 | 43.69 |
10/15/15 | 2398.25 | 55.25 | 811.55 | 41.03 |
11/15/15 | 2500.25 | 102 | 899.32 | 87.76 |
Height of Water (m) | Resolution (m) | ||
---|---|---|---|
0.25 | 0.5 | 1 | |
2.5 | 1119.68 | 1048.08 | 922.09 |
2.25 | 907.27 | 829.66 | 693.05 |
2 | 713.01 | 641.74 | 514.69 |
1.75 | 563.86 | 503.95 | 393.58 |
1.5 | 440.77 | 390.52 | 295.95 |
1.25 | 335.48 | 294.26 | 215.63 |
1 | 245.04 | 212.29 | 148.95 |
0.75 | 165.40 | 140.54 | 92.34 |
0.5 | 97.97 | 81.00 | 48.39 |
0.25 | 43.49 | 34.54 | 17.89 |
Height of Water (m) | Resolution (m) | ||
---|---|---|---|
0.25 | 0.5 | 1 | |
2.5 | 901.70 | 845.42 | 769.99 |
2.25 | 678.63 | 616.71 | 530.15 |
2 | 472.10 | 404.61 | 312.73 |
1.75 | 308.23 | 251.20 | 176.12 |
1.5 | 191.01 | 144.29 | 86.57 |
1.25 | 115.05 | 78.18 | 37.16 |
1 | 67.48 | 40.26 | 14.54 |
0.75 | 39.81 | 21.27 | 6.34 |
0.5 | 22.23 | 11.36 | 3.00 |
0.25 | 10.01 | 4.98 | 1.25 |
Height of Water (m) | Resolution (m) | ||
---|---|---|---|
0.25 | 0.5 | 1 | |
2.5 | 162.25 | 112.5 | 158 |
2.25 | 193.25 | 174 | 238 |
2 | 242.50 | 253.5 | 313 |
1.75 | 295.50 | 314.5 | 370 |
1.5 | 340.25 | 387.5 | 430 |
1.25 | 391.75 | 460.5 | 495 |
1 | 459 | 558.5 | 584 |
0.75 | 539.50 | 660.5 | 701 |
0.5 | 692.50 | 835.5 | 868 |
0.25 | 903.25 | 914.5 | 958 |
Height of Water (m) | Resolution (m) | ||
---|---|---|---|
0.25 | 0.5 | 1 | |
2.5 | 28 | 1 | 6 |
2.25 | 31 | 9 | 25 |
2 | 46.25 | 34.5 | 69 |
1.75 | 78.25 | 98.5 | 131 |
1.5 | 130.75 | 188.5 | 215 |
1.25 | 253 | 317 | 344 |
1 | 360.5 | 483 | 507 |
0.75 | 587.75 | 669 | 731 |
0.5 | 718.75 | 831.5 | 882 |
0.25 | 887.25 | 928.5 | 993 |
References
- Frey, R.W.; Basan, P.B. Coastal salt marshes. In Coastal Sedimentary Environments; Springer: New York, NY, USA, 1978; pp. 101–169. [Google Scholar]
- Allen, J.R.L. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 2000, 19, 1155–1231. [Google Scholar] [CrossRef]
- Ranwell, D.S. Ecology of Salt Marshes and Sand Dunes; Chapman and Hall: London, UK, 1972; Volume 258. [Google Scholar]
- Duarte, B.; Reboreda, R.; Caçador, I. Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 2008, 73, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.A. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 1963, 44, 445–456. [Google Scholar] [CrossRef]
- Costa, C.S.; Marangoni, J.C.; Azevedo, A.M. Plant zonation in irregularly flooded salt marshes: Relative importance of stress tolerance and biological interactions. J. Ecol. 2003, 91, 951–965. [Google Scholar] [CrossRef]
- Pennings, S.C.; Grant, M.B.; Bertness, M.D. Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding, salinity and competition. J. Ecol. 2005, 93, 159–167. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2014. [Google Scholar]
- Feagin, R.A.; Lozada-Bernard, S.M.; Ravens, T.M.; Möller, I.; Yeager, K.M.; Baird, A.H. Does vegetation prevent wave erosion of salt marsh edges? Proc. Natl. Acad. Sci. USA 2009, 106, 10109–10113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, I.; Spencer, T. Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change. J. Coast. Res. 2002, 36, 506–521. [Google Scholar] [CrossRef]
- Nixon, S.W. Between Coastal Marshes and Coastal Waters—A Review of Twenty Years of Speculation and Research on the Role of Salt Marshes in Estuarine Productivity and Water Chemistry; Springer: New York, NY, USA, 2012; pp. 437–525. [Google Scholar]
- Connor, R.F.; Chmura, G.L.; Beecher, C.B. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes. Glob. Biogeochem. Cycles 2001, 15, 943–954. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; Megonigal, P. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS ONE 2012, 7, 43542. [Google Scholar] [CrossRef] [PubMed]
- Möller, I.; Spencer, T.; French, J.R.; Leggett, D.J.; Dixon, M. The Sea-Defence Value of Salt Marshes: Field Evidence From North Norfolk. Water Environ. J. 2001, 15, 109–116. [Google Scholar] [CrossRef]
- Möller, I.; Spencer, T.; French, J.R.; Leggett, D.J.; Dixon, M. Wave transformation over salt marshes: A field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 1999, 49, 411–426. [Google Scholar] [CrossRef]
- Thorne, K.M.; Takekawa, J.Y.; Elliott-Fisk, D.L. Ecological effects of climate change on salt marsh wildlife: A case study from a highly urbanized estuary. J. Coast. Res. 2012, 28, 1477–1487. [Google Scholar] [CrossRef]
- Wilson, A.M.; Moore, W.S.; Joye, S.B.; Anderson, J.L.; Schutte, C.A. Storm-driven groundwater flow in a salt marsh. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Valiela, I.; Cole, M.L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 2002, 5, 92–102. [Google Scholar] [CrossRef]
- Cao, Y.; Green, P.G.; Holden, P.A. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl. Environ. Microbiol. 2008, 74, 7585–7595. [Google Scholar] [CrossRef] [PubMed]
- Boesch, D.F.; Turner, R.E. Dependence of fishery species on salt marshes: The role of food and refuge. Estuaries 1984, 7, 460–468. [Google Scholar] [CrossRef]
- Irlandi, E.A.; Crawford, M.K. Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 1997, 110, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Minello, T.J.; Able, K.W.; Weinstein, M.P.; Hays, C.G. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth and survival through meta-analysis. Mar. Ecol. Prog. Ser. 2003, 246, 39–59. [Google Scholar] [CrossRef]
- Green, B.C.; Smith, D.J.; Grey, J.; Underwood, G.J. High site fidelity and low site connectivity in temperate salt marsh fish populations: A stable isotope approach. Oecologia 2012, 168, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Shisler, J.; Lesser, F.H. Avian utilisation on six salt marshes in New Jersey. Biol. Conserv. 1982, 23, 187–212. [Google Scholar] [CrossRef]
- Bos, D.; Loonen, M.J.; Stock, M.; Hofeditz, F.; Van der Graaf, A.J.; Bakker, J.P. Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. J. Nat. Conserv. 2005, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Zhou, Y.; Zhang, L.; Yuan, L. Analyzing the habitat suitability for migratory birds at the Chongming Dongtan Nature Reserve in Shanghai, China. Estuar. Coast. Shelf Sci. 2008, 80, 296–302. [Google Scholar] [CrossRef]
- Beaumont, N.J.; Austen, M.C.; Mangi, S.C.; Townsend, M. Economic valuation for the conservation of marine biodiversity. Mar. Pollut. Bull. 2008, 56, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Allen John, R.L. Saltmarshes: Morphodynamics, Conservation, and Engineering Significance; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Simas, T.; Nunes, J.P.; Ferreira, J.G. Effects of global climate change on coastal salt marshes. Ecol. Model. 2001, 139, 1–15. [Google Scholar] [CrossRef]
- Adam, P. Saltmarshes in a time of change. Environ. Conserv. 2002, 29, 39–61. [Google Scholar] [CrossRef]
- Wigand, C.; McKinney, R.A.; Charpentier, M.A.; Chintala, M.M.; Thursby, G.B. Relationships of nitrogen loadings, residential development, and physical characteristics with plant structure in New England salt marshes. Estuaries 2003, 26, 1494–1504. [Google Scholar] [CrossRef]
- Deegan, L.A.; Bowen, J.L.; Drake, D.; Fleeger, J.W.; Friedrichs, C.T.; Galvan, K.A.; Hobbie, J.E.; Hopkinson, C.; Johnson, D.S.; Johnson, J.M.; et al. Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecol. Appl. 2007, 17. [Google Scholar] [CrossRef]
- Turner, R.E.; Howes, B.L.; Teal, J.M.; Milan, C.S.; Swenson, E.M.; Goehringer-Toner, D.D. Salt marshes and eutrophication: An unsustainable outcome. Limnol. Oceanogr. 2009, 54, 1634. [Google Scholar] [CrossRef]
- Lin, Q.; Mendelssohn, I.A. A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes. Mar. Pollut. Bull. 1996, 32, 202–209. [Google Scholar] [CrossRef]
- Mason, C.F.; Underwood, G.J.C.; Baker, N.R.; Davey, P.A.; Davidson, I.; Hanlon, A.; Long, S.P.; Oxborough, K.; Paterson, D.M.; Watson, A. The role of herbicides in the erosion of salt marshes in eastern England. Environ. Pollut. 2003, 122, 41–49. [Google Scholar] [CrossRef]
- Bai, J.; Xiao, R.; Zhang, K.; Gao, H. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J. Hydrol. 2012, 450, 244–253. [Google Scholar] [CrossRef]
- Silliman, B.R.; van de Koppel, J.; McCoy, M.W.; Diller, J.; Kasozi, G.N.; Earl, K.; Adams, P.N.; Zimmerman, A.R. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 11234–11239. [Google Scholar] [CrossRef] [PubMed]
- Bolivar, J.P.; García-Tenorio, R.; García-León, M. Enhancement of natural radioactivity in soils and salt-marshes surrounding a non-nuclear industrial complex. Sci. Total Environ. 1995, 173, 125–136. [Google Scholar] [CrossRef]
- Thomson, J.; Dyer, F.M.; Croudace, I.W. Records of radionuclide deposition in two salt marshes in the United Kingdom with contrasting redox and accumulation conditions. Geochim. Cosmochim. Acta 2002, 66, 1011–1023. [Google Scholar] [CrossRef]
- Reed, D.J. The impact of sea-level rise on coastal salt marshes. Prog. Phys. Geogr. 1990, 14, 465–481. [Google Scholar] [CrossRef]
- Van Wijnen, H.J.; Bakker, J.P. Long-term surface elevation change in salt marshes: A prediction of marsh response to future sea-level rise. Estuar. Coast. Shelf Sci. 2001, 52, 381–390. [Google Scholar] [CrossRef]
- Ranwell, D.S. Spartina salt marshes in southern England: I. The effects of sheep grazing at the upper limits of Spartina marsh in Bridgwater Bay. J. Ecol. 1961, 325–340. [Google Scholar] [CrossRef]
- Morris, J.T.; Jensen, A. The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. J. Ecol. 1998, 86, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Silliman, B.R.; Bertness, M.D. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv. Biol. 2004, 18, 1424–1434. [Google Scholar] [CrossRef]
- Hartig, E.K.; Gornitz, V.; Kolker, A.; Mushacke, F.; Fallon, D. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 2002, 22, 71–89. [Google Scholar] [CrossRef]
- Gedan, K.B.; Altieri, A.H.; Bertness, M.D. Uncertain future of New England salt marshes. Mar. Ecol. Prog. Ser. 2011, 434, 229–237. [Google Scholar] [CrossRef]
- Burdick, D.M.; Buchsbaum, R.; Holt, E. Variation in soil salinity associated with expansion of Phragmites australis in salt marshes. Environ. Exp. Bot. 2001, 46, 247–261. [Google Scholar] [CrossRef]
- Bart, D.; Hartman, J.M. The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: New links to human activities. Estuaries 2003, 26, 436–443. [Google Scholar] [CrossRef]
- Vasquez, E.A.; Glenn, E.P.; Brown, J.J.; Guntenspergen, G.R.; Nelson, S.G. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar. Ecol. Prog. Ser. 2005, 298, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of human-driven change in salt marsh ecosystems. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef] [PubMed]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manag. 1996, 24, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Malthus, T.J.; Mumby, P.J. Remote sensing of the coastal zone: An overview and priorities for future research. Int. J. Remote Sens. 2003, 24, 2805–2815. [Google Scholar] [CrossRef] [Green Version]
- Gallant, A. The Challenges of remote monitoring of wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef]
- Williams, P.B.; Orr, M.K. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary. Restor. Ecol. 2002, 10, 527–542. [Google Scholar] [CrossRef]
- Schuerch, M.; Vafeidis, A.; Slawig, T.; Temmerman, S. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 2013, 118, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M. Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2014–2023. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Nygaard, B.; Svenning, J.C. Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands 2011, 31, 471–482. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Classification of salt marsh vegetation using edaphic and remote sensing-derived variables. Estuar. Coast. Shelf. Sci. 2014, 141, 47–57. [Google Scholar] [CrossRef]
- Alexander, C.; Deák, B.; Kania, A.; Mücke, W.; Heilmeier, H. Classification of vegetation in an open landscape using full-waveform airborne laser scanner data. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 76–87. [Google Scholar] [CrossRef]
- Rosso, P.H.; Ustin, S.L.; Hastings, A. Use of lidar to study changes associated with Spartina invasion in San Francisco Bay marshes. Remote Sens. Environ. 2006, 100, 295–306. [Google Scholar] [CrossRef]
- Rapinel, S.; Hubert-Moy, L.; Clément, B. Using LiDAR data to evaluate wetland functions. In Proceedings of the 34th International Symposium for Remote Sensing of the Environment (ISRSE), Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Rapinel, S.; Rossignol, N.; Gore, O.; Jambon, O.; Bouger, G.; Mansons, J.; Bonis, A. Daily Monitoring of Shallow and Fine-Grained Water Patterns in Wet Grasslands Combining Aerial LiDAR Data and In Situ Piezometric Measurements. Sustainability 2018, 10, 708. [Google Scholar] [CrossRef]
- Schalles, J.F.; Hladik, C.M.; Lynes, A.A.; Pennings, S.C. Landscape estimates of habitat types, plant biomass, and invertebrate densities in a Georgia salt marsh. Oceanography 2013, 26, 88–97. [Google Scholar] [CrossRef]
- Rogers, J.N.; Parrish, C.E.; Ward, L.G.; Burdick, D.M. Assessment of Elevation Uncertainty in Salt Marsh Environments using Discrete-Return and Full-Waveform Lidar. J. Coast. Res. 2016, 76 (Suppl. 1), 107–122. [Google Scholar] [CrossRef] [Green Version]
- Hladik, C.; Schalles, J.; Alber, M. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sens. Environ. 2013, 139, 318–330. [Google Scholar] [CrossRef]
- Montane, J.M.; Torres, R. Accuracy assessment of LIDAR saltmarsh topographic data using RTK GPS. Photogramm. Eng. Remote Sens. 2006, 72, 961–967. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery. Hydrol. Earth Syst. Sci 2017, 21, 3579–3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, L.S.; Seong, J.C.; Ogle, J.; Beute, E.; Indridason, J.; Hall, J.D.; Nelson, S.; Jones, T.; Humphrey, J. Challenges and lessons from a wetland LiDAR project: A case study of the Okefenokee Swamp, Georgia, USA. Geocarto Int. 2013, 28, 210–226. [Google Scholar] [CrossRef]
- Wang, J. (Ed.) Mapping Salt Marsh Vegetation by Integrating Hyperspectral and LiDAR Remote Sensing; CRC Press: Boca Raton, FL, USA, 2009; pp. 173–190. [Google Scholar]
- Rapinel, S.; Hubert-Moy, L.; Clément, B. Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 56–64. [Google Scholar] [CrossRef]
- Sadro, S.; Gastil-Buhl, M.; Melack, J. Characterizing patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations. Remote Sens. Environ. 2007, 110, 226–239. [Google Scholar] [CrossRef]
- Chust, G.; Galparsoro, I.; Borja, A.; Franco, J.; Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 2008, 78, 633–643. [Google Scholar] [CrossRef]
- Cook, B.D.; Bolstad, P.V.; Næsset, E.; Anderson, R.S.; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations. Remote Sens. Environ. 2009, 113, 2366–2379. [Google Scholar] [CrossRef]
- Hladik, C.M.; Alber, M. Salt Marsh Habitat Mapping on Sapelo Island, GA Using LIDAR and Hyperspectral Imagery; Georgia Southern University: Statesboro, GA, USA, 2009. [Google Scholar]
- Wang, J.; Liu, Z.; Yu, H.; Li, F. Mapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data. Remote Sens. 2017, 9, 589. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Popescu, S.C.; Feagin, R.A. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote Sens. Environ. 2014, 154, 345–357. [Google Scholar] [CrossRef]
- Collin, A.; Long, B.; Archambault, P. Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR. Remote Sens. Environ. 2010, 114, 520–530. [Google Scholar] [CrossRef]
- Van Beijma, S.J. Remote Sensing-Based Mapping and Modelling of Salt Marsh Habitats Based on Optical, Lidar and Sar Data. Ph.D. Thesis, Department of Geography, University of Leicester, Leicester, UK, 2015. Available online: http://hdl.handle.net/2381/32455 (accessed on 15 January 2019).
- Ramsey, E.W.; Nelson, G.A.; Sapkota, S.K. Classifying coastal resources by integrating optical and radar imagery and color infrared photography. Mangroves Salt Marshes 1998, 2, 109–119. [Google Scholar] [CrossRef]
- Ramsey, E., III; Lu, Z.; Rangoonwala, A.; Rykhus, R. Multiple baseline radar interferometry applied to coastal land cover classification and change analyses. Giscience Remote Sens. 2006, 43, 283–309. [Google Scholar] [CrossRef]
- Ramsey, E., III; Rangoonwala, A.; Chi, Z.; Jones, C.E.; Bannister, T. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data. Remote Sens. Environ. 2014, 152, 364–374. [Google Scholar] [CrossRef]
- Ramsey, E.W., III; Nelson, G.A.; Laine, S.C.; Kirkman, R.G.; Topham, W. Generation of coastal marsh topography with radar and ground-based measurements. J. Coast. Res. 1997, 1335–1341. [Google Scholar]
- Ramsey, E.W., III. Monitoring flooding in coastal wetlands by using radar imagery and ground-based measurements. Int. J. Remote Sens. 1995, 16, 2495–2502. [Google Scholar] [CrossRef]
- Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D. Monitoring duration and extent of storm-surge and flooding in western coastal Louisiana marshes with Envisat ASAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 387–399. [Google Scholar] [CrossRef]
- Suzuoki, Y.; Rangoonwala, A.; Ramsey, E.W., III. Monitoring coastal inundation with Synthetic Aperture Radar satellite data (No. 2011-1208). US Geol. Surv. 2011. [Google Scholar] [CrossRef]
- Ramsey, E.W.; Nelson, G.A.; Sapkota, S.K.; Laine, S.C.; Verdi, J.; Krasznay, S. Using multiple-polarization L-band radar to monitor marsh burn recovery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 635–639. [Google Scholar] [CrossRef]
- Ramsey, E.; Rangoonwala, A.; Middleton, B.; Lu, Z. Satellite optical and radar data used to track wetland forest impact and short-term recovery from Hurricane Katrina. Wetlands 2009, 29, 66. [Google Scholar] [CrossRef]
- Rangoonwala, A.; Enwright, N.M.; Ramsey, E., III; Spruce, J.P. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy. Int. J. Remote Sens. 2016, 37, 1692–1713. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, E.; Rangoonwala, A. Mapping oil in a coastal marsh with polarimetric synthetic aperture radar. Oceans 2012, 1–8. [Google Scholar] [CrossRef]
- Ramsey, E., III; Meyer, B.M.; Rangoonwala, A.; Overton, E.; Jones, C.E.; Bannister, T. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes. Mar. Pollut. Bull. 2014, 89, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, E.; Rangoonwala, A.; Jones, C. Structural classification of marshes with polarimetric SAR highlighting the temporal mapping of marshes exposed to oil. Remote Sens. 2015, 7, 11295–11321. [Google Scholar] [CrossRef]
- Ramsey, E., III; Rangoonwala, A.; Suzuoki, Y.; Jones, C.E. Oil detection in a coastal marsh with polarimetric synthetic aperture radar (SAR). Remote Sens. 2011, 3, 2630–2662. [Google Scholar] [CrossRef]
- Badura, G.P.; Bachmann, C.M.; Tyler, A.C.; Goldsmith, S.; Eon, R.S.; Lapszynski, C.S. A Novel Approach for Deriving LAI of Salt Marsh Vegetation Using Structure From Motion and Multiangular Spectra. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Fernandez-Nunez, M.; Burningham, H.; Zujar, J.O. Improving accuracy of LiDAR-derived digital terrain models for saltmarsh management. J. Coast. Conserv. 2017, 21, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Hodges, B.R. Representing hydrodynamically important blocking features in coastal or riverine lidar topography. Nat. Hazards Earth Syst. Sci. 2015, 15, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Chirol, C.; Haigh, I.D.; Pontee, N.; Thompson, C.E.; Gallop, S.L. Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from lidar. Remote Sens. Environ. 2018, 209, 291–311. [Google Scholar] [CrossRef]
- Chapman, V.J. Coastal movement and the development of some New England salt marshes. Proc. Geol. Assoc. 1938, 49, 373–384. [Google Scholar] [CrossRef]
- Deevey, E.S. On the date of the last rise of sea level in southern New England, with remarks on the Grassy Island site. Am. J. Sci. 1948, 246, 329–352. [Google Scholar] [CrossRef]
- Redfield, A.C. Development of a New England salt marsh. Ecol. Monogr. 1972, 42, 201–237. [Google Scholar] [CrossRef]
- Nixon, S.W. Ecol. New Engl. High Salt Marshes: A Community Profile 1982 (No. FWS/OBS-81/55); National Coastal Ecosystems Team: Washington, DC, USA; Rhode Island Univ.: Kingston, RI, USA; Graduate School of Oceanography: Narragansett, RI, USA, 1982. [Google Scholar]
- Teal, J.; Pendleton, E.; Kitchens, W.; Young, M.W. The Ecology of Regularly Flooded Salt Marshes of New England: A Community Profile; Fish and Wildlife Service, US Department of the Interior: Annapolis, MD, USA, 1986. [Google Scholar]
- Nixon, S.W.; Oviatt, C.A. Ecology of a New England salt marsh. Ecol. Monogr. 1973, 43, 463–498. [Google Scholar] [CrossRef]
- Bertness, M.D.; Ellison, A.M. Determinants of pattern in a New England salt marsh plant community. Ecol. Monogr. 1987, 57, 129–147. [Google Scholar] [CrossRef]
- Hartman, J.M. Recolonization of small disturbance patches in a New England salt marsh. Am. J. Bot. 1988, 75, 1625–1631. [Google Scholar] [CrossRef]
- Callaway, R.M. Positive interactions among plants. Bot. Rev. 1995, 61, 306–349. [Google Scholar] [CrossRef]
- Bertness, M.D.; Ewanchuk, P.J. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 2002, 132, 392401. [Google Scholar] [CrossRef] [PubMed]
- Ewanchuk, P.J.; Bertness, M.D. Structure and organization of a northern New England salt marsh plant community. J. Ecol. 2004, 92, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.R.; Cameron, B. Landward migration of barrier island sands under stable sea level conditions: Plum Island, Massachusetts. J. Sediment. Res. 1977, 47. [Google Scholar] [CrossRef]
- Deegan, L.A.; Garritt, R.H. Evidence for spatial variability in estuarine food webs. Mar. Ecol. Prog. Ser. 1997, 147, 3147. [Google Scholar] [CrossRef]
- Cook, B.D.; Nelson, R.F.; Middleton, E.M.; Morton, D.C.; McCorkel, J.T.; Masek, J.G.; Ranson, K.J.; Ly, V.; Montesano, P.M. NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens. 2013, 5, 4045–4066. [Google Scholar] [CrossRef]
- Paynter, I.; Saenz, E.; Genest, D.; Peri, F.; Erb, A.; Li, Z.; Wiggin, K.; Muir, J.; Raumonen, P.; Schaaf, E.S.; et al. Observing ecosystems with lightweight, rapid-scanning terrestrial lidar scanners. Remote Sens. Ecol. Conserv. 2016, 2, 174–189. [Google Scholar] [CrossRef] [Green Version]
- Paynter, I.; Genest, D.; Peri, F.; Schaaf, C. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems. Interface Focus 2018, 8, 20170043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, I.I.I.; Rangoonwala, A. Leaf optical property changes associated with the occurrence of Spartina alterniflora dieback in coastal Louisiana related to remote sensing mapping. Photogramm. Eng. Remote Sens. 2005, 71, 299–311. [Google Scholar] [CrossRef]
- Ramsey, E., III; Rangoonwala, A.; Nelson, G.; Ehrlich, R.; Martella, K. Generation and validation of characteristic spectra from EO1 Hyperion image data for detecting the occurrence of the invasive species, Chinese tallow. Int. J. Remote Sens. 2005, 26, 1611–1636. [Google Scholar] [CrossRef]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Chmura, G.L. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean. Coast. Manag. 2013, 83, 25–31. [Google Scholar] [CrossRef]
- Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagherazzi, S.; Wollheim, W.M. Coastal eutrophication as a driver of salt marsh loss. Nature 2012, 490, 388. [Google Scholar] [CrossRef] [PubMed]
- Paynter, I.; Genest, D.; Saenz, E.; Peri, F.; Li, Z.; Strahler, A.; Schaaf, C. Quality Assessment of Terrestrial Laser Scanner Ecosystem Observations Using Pulse Trajectories. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–10. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Currin, C.A. Community structure and functional dynamics of benthic microalgae in salt marshes. In Concepts and Controversies in Tidal Marsh Ecology; Springer: Dordrecht, The Netherlands, 2002; pp. 81–106. [Google Scholar]
- Bertness, M.D.; Ewanchuk, P.J.; Silliman, B.R. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl. Acad. Sci. USA 2002, 99, 1395–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, R.E.; Burdick, D.M.; Dionne, M. Ditching and ditch-plugging in New England salt marshes: Effects on hydrology, elevation, and soil characteristics. Estuaries Coasts 2013, 36, 610–625. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paynter, I.; Schaaf, C.; Bowen, J.L.; Deegan, L.; Peri, F.; Cook, B. Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar. Remote Sens. 2019, 11, 509. https://doi.org/10.3390/rs11050509
Paynter I, Schaaf C, Bowen JL, Deegan L, Peri F, Cook B. Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar. Remote Sensing. 2019; 11(5):509. https://doi.org/10.3390/rs11050509
Chicago/Turabian StylePaynter, Ian, Crystal Schaaf, Jennifer L. Bowen, Linda Deegan, Francesco Peri, and Bruce Cook. 2019. "Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar" Remote Sensing 11, no. 5: 509. https://doi.org/10.3390/rs11050509
APA StylePaynter, I., Schaaf, C., Bowen, J. L., Deegan, L., Peri, F., & Cook, B. (2019). Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar. Remote Sensing, 11(5), 509. https://doi.org/10.3390/rs11050509