Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns
Abstract
:1. Introduction
- Start with known datasets;
- Train the machine learning algorithm on known datasets (training sets);
- Obtain the dataset for which one wants to know an answer (test sets); and
- Pass the test set through the trained algorithm to provide the result [16].
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mell, I.C. Can you tell a green field from a cold steel rail. Examining the “green” of green infrastructure development. Local Environ. Int. J. Justice Sustain. 2015. [Google Scholar] [CrossRef]
- Bird, W. Natural greenspace. Br. J. Gen. Pract. 2007, 57, 69. [Google Scholar] [PubMed]
- Dennis, M.; Barlow, D.; Cavan, G.; Id, P.A.C.; Gilchrist, A.; Handley, J.; Id, P.J.; Thompson, J.; Id, K.T.; Wheater, C.P.; et al. Mapping urban green infrastructure: A novel landscape-based approach to incorporating land use and land cover in the mapping of human-dominated systems. Land 2018, 7, 17. [Google Scholar] [CrossRef]
- Yang, C.; Huang, H.; Zhang, Y. Comparison of extracting the urban green land from satellite images with multi-resolutions. In Proceedings of the Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009. [Google Scholar] [CrossRef]
- Parker, J.; Simpson, G.D. Public green infrastructure contributes to city livability: A systematic quantitative review. Land 2018, 7, 116. [Google Scholar] [CrossRef]
- Juane, E. Reflecting on green infrastructure and spatial planning in africa: The complexities, perptions, and y foard. Sustainability 2019, 11, 455. [Google Scholar] [CrossRef]
- Green, F.; Policies, I. Predicting land use changes in philadelphia following green infrastructure policies. Land 2019, 8, 28. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S. Mapping structural parameters and species composition of riparian vegetation using IKONOS and landsat ETM + data in Australian tropical savannahs. Photogramm. Eng. Remote Sens. 2006, 72, 71–80. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brunelle, A.R.; Carter, V.A. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data. Remote Sens. Environ. 2010, 114, 2431–2435. [Google Scholar] [CrossRef]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Investigating the capability of few strategically placed worldview-2 multispectral bands to discriminate forest species in KwaZulu-Natal, South Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 307–316. [Google Scholar] [CrossRef]
- Gašparović, M.; Dobrinić, D.; Medak, D. Urban vegetation detection based on the land-cover classification of Planetscope, Rapideye and Wordview-2 satellite imagery. In Proceedings of the 18th International Multidisciplinary Scientific Geoconference SGEM, 30 June–9 July 2018. [Google Scholar]
- Kranjčić, N.; Župan, R.; Rezo, M. Satellite-based hyperspectral imaging and cartographic visualization of bark beetle forest damage for the city of Čabar. Tech. J. 2018, 12, 39–43. [Google Scholar] [CrossRef]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef]
- Friedel, M.J.; Buscema, M.; Vicente, L.E.; Iwashita, F.; Koga-vicente, A. Mapping fractional landscape soils and vegetation components from hyperion satellite imagery using an unsupervised machine-learning workflow. Int. J. Digit. Earth 2017, 11, 670–690. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping vegetation and land use types in fanjingshan national nature reserve using google earth engine. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Hartshorn, S. Machine Learning With Random Forests And Decision Trees A Visual Guide For Beginners; Amazon Digital Services LCC,410 Terry Avenue North: Seattle, WA, USA, 2016. [Google Scholar]
- Sim, S.; Im, J.; Park, S.; Park, H.; Hwan Ahn, M.; Chan, P. Icing detection over east asia from Geostationary satellite data using machine learning approaches. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995; ISBN 0387987800. [Google Scholar]
- Gašparović, M.; Zrinjski, M.; Gudelj, M. Analiza urbanizacije grada Splita. Geod. List 2017, 71. [Google Scholar]
- Irvin, B.J.; Ventura, S.J.; Slater, B.K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 1997, 77, 137–154. [Google Scholar] [CrossRef]
- Campbell, C.; Ying, Y. Learning with Support Vector Machines. In Synthesis Lectures on Artificial Intelligence and Machine Learning; Morgan & Claypool Publishers: San Rafael, CA, USA, 2011; ISBN 9781608456161. [Google Scholar]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Steinwart, I.; Christmann, A. Support Vector Machines; Schölkopf, B., Jordan, M., Kleinberg, J., Eds.; Springer-Verlag: New York, NY, USA, 2008; ISBN 978-0-387-77241-7. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2013, 2. [Google Scholar] [CrossRef]
- Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.A.; Homayouni, S.; Hasanlou, M. A comparison study of different kernel functions for SVM-based classification of multi-temporal polarimetry SAR data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; ISPRS: Hanover, Germany, 2014. [Google Scholar]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 12 September 2018).
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Release 2017, 4, 29. [Google Scholar]
- Diva-gis web page. Available online: http://www.diva-gis.org/ (accessed on 12 September 2018).
- Agency, E.E. CORINE Land Cover—Technical guide; European Environment Agency: Kobenhavn, Denmark, 2000. [Google Scholar]
- Saga-Gis Web Page. Available online: http://www.saga-gis.org/saga_tool_doc/2.2.0/imagery_svm_0.html (accessed on 12 October 2018).
- Joachims, T. Learning to Classify Text Using Support Vector Machines; In Science+Business Media, LCC; Springer: Berlin, Germany, 2001; ISBN 978-1-4613-5298-3. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37. [Google Scholar]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of fi ve machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Demir, B.; Ertürk, S. Hyperspectral image classification using relevance vector machines. IEEE Geosci. Remote Sens. Lett. 2007, 4, 586–590. [Google Scholar] [CrossRef]
- Noi, P.T.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef]
- Ustuner, M.; Sanli, F.B.; Dixon, B. Application of support vector machines for landuse classification using high-resolution rapideye images: A sensitivity analysis application of support vector machines for landuse Classification using high-resolution rapideye Images. Eur. J. Remote Sens. 2017, 48, 403–422. [Google Scholar] [CrossRef]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; D’Andrimont, R.; Defourny, P. Sentinel-2’s potential for sub-pixel landscape feature detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef]
E(m) | φ (d° m′ s″) | N(m) | λ (d° m′ s″) | |
---|---|---|
Varaždin | 487,550.00 | 46°18′34,6″ | 5,130,000.00 | 16°20′18,1″ |
Osijek | 671,000.00 | 45°33′03,3″ | 5,048,000.00 | 18°41′24,3″ |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | C-SVC | ν-SVR | ν-SVR |
Kernel | Pol | Pol | Pol | Pol | RBF | RBF | RBF | RBF | Sig | Sig | Sig | Sig | RBF | RBF |
γ | 1 | 2 | 4 | 8 | 0 | 0.5 | 1 | 2 | 0 | 0.5 | 1.5 | 2 | 1 | 1 |
C | 1 | 50 | 98 | 150 | 1 | 10 | 28 | 50 | 1 | 10 | 13 | 50 | 1 | 1 |
ν-SVR | / | / | / | / | / | / | / | / | / | / | / | / | 0.1 | 0.1 |
SVR-ε | / | / | / | / | / | / | / | / | / | / | / | / | 0.1 | 0.5 |
cat# | 1 | 2 | 3 | 4 | 5 | Row Sum |
---|---|---|---|---|---|---|
1 | 452 | 0 | 2 | 0 | 1 | 455 |
2 | 0 | 1788 | 32 | 0 | 3 | 2733 |
3 | 0 | 3 | 426 | 0 | 12 | 5452 |
4 | 0 | 0 | 0 | 815 | 109 | 9095 |
5 | 0 | 0 | 42 | 271 | 856 | 13,907 |
Col Sum | 452 | 1791 | 502 | 1086 | 981 |
K value | Classification Accuracy |
0.41–0.60 | moderate |
0.61–0.80 | high |
0.80 -> | very high |
1 | 7 | 8 | 9 | 13 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class no. | C | O | est. K | C | O | est. K | C | O | est. K | C | O | est. K | C | O | est. K |
1 | 1.62 | 5.75 | 0.98 | 0.66 | 0.00 | 0.99 | 0.66 | 0.00 | 0.99 | 100 | 100 | -0.1 | 3.00 | 0.00 | 0.97 |
2 | 1.16 | 0.22 | 0.98 | 1.92 | 0.17 | 0.97 | 1.92 | 0.17 | 0.97 | 7.41 | 12.73 | 0.88 | 0.61 | 0.39 | 0.99 |
3 | 3.11 | 13.15 | 0.97 | 3.40 | 15.14 | 0.96 | 3.42 | 15.54 | 0.96 | 53.36 | 19.92 | 0.40 | 7.59 | 2.99 | 0.92 |
4 | 100 | 100 | -0.3 | 11.80 | 24.95 | 0.85 | 11.09 | 25.41 | 0.86 | 36.22 | 92.54 | 0.53 | 9.76 | 27.62 | 0.87 |
5 | 54.48 | 1.63 | 0.32 | 26.78 | 12.74 | 0.66 | 27.11 | 12.03 | 0.66 | 67.85 | 35.47 | 0.14 | 26.19 | 13.25 | 0.67 |
K | 0.668972 | 0.867978 | 0.867981 | 0.415319 | 0.874915 |
1 | 7 | 8 | 9 | 13 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class no. | C | O | est. K | C | O | est. K | C | O | est. K | C | O | est. K | C | O | est. K |
1 | 0.00 | 0.36 | 1.00 | 0.00 | 0.19 | 1.00 | 0.00 | 0.17 | 1.00 | 100 | 100 | -0.2 | 0.00 | 0.00 | 1.00 |
2 | 0.27 | 9.62 | 0.99 | 0.14 | 9.92 | 0.99 | 0.12 | 9.94 | 0.99 | 66.89 | 66.76 | 0.10 | 76.58 | 87.76 | -0.1 |
3 | 7.87 | 0.05 | 0.89 | 8.09 | 0.00 | 0.89 | 8.11 | 0.00 | 0.87 | 79.78 | 86.06 | -0.1 | 54.71 | 35.51 | 0.23 |
4 | 9.62 | 0.00 | 0.87 | 6.20 | 17.38 | 0.92 | 5.21 | 31.14 | 0.93 | 9.14 | 0.48 | 0.88 | 5.24 | 31.84 | 0.93 |
5 | NA | NA | NA | 77.19 | 51.53 | 0.21 | 82.07 | 35.76 | 0.15 | 45.76 | 94.58 | 0.53 | 82.36 | 35.59 | 0.15 |
K | 0.928948 | 0.887217 | 0.847053 | 0.195597 | 0.874915 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kranjčić, N.; Medak, D.; Župan, R.; Rezo, M. Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns. Remote Sens. 2019, 11, 655. https://doi.org/10.3390/rs11060655
Kranjčić N, Medak D, Župan R, Rezo M. Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns. Remote Sensing. 2019; 11(6):655. https://doi.org/10.3390/rs11060655
Chicago/Turabian StyleKranjčić, Nikola, Damir Medak, Robert Župan, and Milan Rezo. 2019. "Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns" Remote Sensing 11, no. 6: 655. https://doi.org/10.3390/rs11060655
APA StyleKranjčić, N., Medak, D., Župan, R., & Rezo, M. (2019). Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns. Remote Sensing, 11(6), 655. https://doi.org/10.3390/rs11060655