Assessment of the X- and C-Band Polarimetric SAR Data for Plastic-Mulched Farmland Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site and Data
2.2. Sampling
2.3. Principles and Methods
2.3.1. Dual Polarimetry and Its Scattering Parameters
2.3.2. Full Polarimetry and Its Scattering Parameters
2.3.3. Random Forest Classification Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bai, L.; Hai, J.; Han, Q.; Jia, Z. Effects of mulching with different kinds of plastic film on growth and water use efficiency of winter wheat in Weibei Highland. Agric. Res. Arid Areas 2010, 28, 135–139. [Google Scholar]
- Yan, C.; Mei, X.; He, W.; Zheng, S. Present situation of residue pollution of mulching plastic film and controlling measures. Trans. Chin. Soc. Agric. Eng. 2006, 22, 269–272. [Google Scholar]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J.-STARS 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of plasticulture landscapes in southern Italythrough remote sensing and solid modeling techniques. Landsc. Urban Plan. 2011, 100, 45–56. [Google Scholar] [CrossRef]
- Levin, N.; Lugassi, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote sensing as a tool formonitoring plasticulture in agricultural landscapes. Int. J. Remote Sens. 2007, 28, 183–202. [Google Scholar] [CrossRef]
- Lanorte, A.; De Santis, F.; Nolè, G.; Blanco, I.; Loisi, R.V.; Schettini, E.; Vox, G. Agricultural plastic waste spatial estimation by landsat 8 satellite images. Comput. Electron. Agric. 2017, 141, 35–45. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from sentinel-2 msi and landsat 8 oli data: A case study from almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef]
- Carvajal, F.; Crisanto, E.; Aguilar, F.J.; Aguera, F.; Aguilar, M.A. Green-houses detection using an artificial neural network with a very high resolution satellite image. In Proceedings of the ISPRS Technical Commission II Symposium, Vienna, Austria, 12–14 July 2006; pp. 37–42. [Google Scholar]
- Agüera, F.; Liu, J.G. Automatic greenhouse delineation from quickbird and ikonos satellite images. Comput. Electron. Agric. 2009, 66, 191–200. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z.; Wang, L.; Wu, W.; He, L. Monitoring plastic-mulched farmland by landsat-8 oli imagery using spectral and textural features. Remote Sens. 2016, 8, 353. [Google Scholar] [CrossRef]
- Yang, D.; Jin, C.; Yuan, Z.; Xiang, C.; Chen, X.; Xin, C. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. Isprs J. Photogramm. Remote Sens. 2017, 128, 47–60. [Google Scholar] [CrossRef]
- Mcnairn, H.; Shang, J.; Champagne, C.; Jiao, X. Terrasar-x and RADARSAT-2 for crop classification and acreage estimation. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Qin, M.; Wang, J.; Shang, J.; Peng, W. Assessment of multi-temporal RADARSAT-2 polarimetric sar data for crop classification in an urban/rural fringe area. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013. [Google Scholar]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency assessment of multitemporal c-band RADARSAT-2 intensity and landsat-8 surface reflectance satellite imagery for crop classification in ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3712–3719. [Google Scholar] [CrossRef]
- Jiao, X.; Kovacs, J.M.; Shang, J.; Mcnairn, H.; Dan, W.; Ma, B.; Geng, X. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. Isprs J. Photogramm. Remote Sens. 2014, 96, 38–46. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multi-temporal terrasar-x dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef]
- Li, Y.; Lampropoulos, G. RADARSAT-2 and terrasar-x polarimetric data for crop growth stages estimation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Hasituya; Chen, Z.; Li, F.; Hong, M. Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data. Remote Sens. 2017, 9, 1264. [Google Scholar] [CrossRef]
- Lu, L.; Tao, Y.; Di, L. Object-based plastic-mulched landcover extraction using integrated Sentinel-1 and Sentinel-2 data. Remote Sens. 2018, 10, 1820. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Cloude, S. The Dual Polarization Entropy/Alpha Decomposition: A PALSAR Case Study. In Proceedings of the 3rd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 22–26 January 2007; pp. 1–6. [Google Scholar]
- Heine, I.; Jagdhuber, T.; Itzerott, S. Classification and monitoring of reed belts using dual-polarimetric terrasar-x time series. Remote Sens. 2016, 8, 552. [Google Scholar] [CrossRef]
- Morio, J.; Refregier, P.; Goudail, F.; Dubois-Fernandez, P.C.; Dupuis, X. Information theory-based approach for contrast analysis in polarimetric and/or interferometric sar images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2185–2196. [Google Scholar] [CrossRef]
- Philippe, R.; Jérôme, M. Entropy-Shannon of partially polarized and partially coherent light with gaussian fluctuations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2006, 23, 3036–3044. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric sar data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric sar image decomposition. Tech. Rep. Ieice Sane 2005, 104, 1699–1706. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Dabboor, M.; Montpetit, B.; Howell, S. Assessment of the high resolution sar mode of the radarsat constellation mission for first year ice and multiyear ice characterization. Remote Sens. 2018, 10, 594. [Google Scholar] [CrossRef]
- Tong, S.; Liu, X.; Chen, Q.; Zhang, Z.; Xie, G. Multi-feature based ocean oil spill detection for polarimetric sar data using random forest and the self-similarity parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; He, H.; Wang, L. Assessing different feature sets’ effects on land cover classification in complex surface-mined landscapes by ziyuan-3 satellite imagery. Remote Sens. 2017, 10, 23. [Google Scholar] [CrossRef]
- Loosvelt, L.; Peters, J.; Skriver, H.; Baets, B.D.; Verhoest, N.E.C. Impact of reducing polarimetric sar input on the uncertainty of crop classifications based on the random forests algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4185–4200. [Google Scholar] [CrossRef]
- Mleczko, M.; Mróz, M. Wetland mapping using sar data from the sentinel-1a and tandem-x missions: A comparative study in the biebrza floodplain (poland). Remote Sens. 2018, 10, 78. [Google Scholar] [CrossRef]
- Lei, D.; Yan, Y.N.; Wang, C. Improved polsar image classification by the use of multi-feature combination. Remote Sens. 2015, 7, 4157–4177. [Google Scholar]
- Chen, Y.; He, X.; Jing, W.; Xiao, R. The influence of polarimetric parameters and an object-based approach on land cover classification in coastal wetlands. Remote Sens. 2014, 6, 12575–12592. [Google Scholar] [CrossRef]
Seeding Emergence Stage | Tillering Stage | Overwintering Period | Turning Green Stage | Jointing Stage | Heading and Flowering Stage | Milk Ripening Period | Mature Period |
---|---|---|---|---|---|---|---|
Early October–Middle October | Late October | Early December–Late December | Early March–Late March | Early April–Middle April | Late April–Early May | Middle May–Early Jun | Early Jun |
Number | Parameter | Abbreviation |
---|---|---|
1 | H-A-combination 1 | HA |
2 | H-A-combination 2 | H1mA |
3 | H-A-combination 3 | 1mHA |
4 | H-A-combination 4 | 1mH1mA |
5 | Probability 1 | p1 |
6 | Probability 2 | p2 |
7 | The mean eigenvector | lambda |
8 | The first eigenvector | l1 |
9 | The second eigenvector | l2 |
10 | Entropy_Shannon | SEdual |
11 | Entropy | Hdual |
12 | The mean scattering delta angle | delta |
13 | The first scattering delta angle | delta1 |
14 | The second scattering delta angle | delta2 |
15 | Anisotropy | Adual |
16 | The mean scattering alpha angle | alpha |
17 | The first scattering alpha angle | alpha1 |
18 | The second scattering alpha angle | alpha2 |
19 | The coherence amplitude | |
20 | Backscattering coefficient of VV channel | |
21 | HHVV phase difference | |
22 | Amplitude of | |
23 | Backscattering coefficient of HH channel | |
24 | Backscattering coefficient ratio HH/VV | |
25 | Backscattering coefficient HH minus Backscattering coefficient of VV | |
26 | Backscattering coefficient HH plus Backscattering coefficient of VV |
Number | Parameter | Abbreviation |
---|---|---|
1 | Yamaguchi_vol | Y_vol |
2 | Yamaguchi_odd | Y_odd |
3 | Yamaguchi_hlx | Y_hlx |
4 | Yamaguchi_dbl | Y_dbl |
5 | Probability 1 | P1 |
6 | Probability 2 | P2 |
7 | Probability 3 | P3 |
8 | The mean eigenvector | Lambda |
9 | The first eigenvector | l1 |
10 | The second eigenvector | l2 |
11 | The third eigenvector | l3 |
12 | The gamma parameter | Gamma |
13 | Entropy_Shannon | SEfull |
14 | Entropy | Hfull |
15 | Double bounce Eigenvalue Relative Difference | Derd |
16 | The mean scattering delta angle | Delta |
17 | The beta parameter | Beta |
18 | Anisotropy | Afull |
19 | The mean scattering alpha angle | Alpha |
20 | Freeman_vol | F_vol |
21 | Freeman_odd | F_odd |
22 | Freeman_dbl | F_dbl |
23 | Backscattering coefficient of HV channel | |
24 | Backscattering coefficient of VV channel | |
25 | Backscattering coefficient of HH channel |
SAR Data Type | Mapping Accuracy (%) | User Accuracy (%) | Overall Accuracy (%) | Kappa Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PMF | Bare Soil | Wheat | Urban Areas | Water | PMF | Bare Soil | Wheat | Urban Areas | Water | |||
TerraSAR-X | 53.28 | 59.48 | 93.34 | 88.27 | 99.20 | 64.92 | 59.82 | 88.44 | 85.63 | 99.38 | 90.15 | 0.8464 |
RADARSAT-2 (HH,VV) | 59.56 | 57.1 | 91.78 | 93.79 | 98.81 | 56.85 | 55.98 | 98.81 | 92.80 | 97.82 | 90.71 | 0.8545 |
Full-pol RADARSAT-2 | 72.56 | 75.90 | 98.07 | 99.93 | 98.24 | 70.01 | 74.51 | 98.19 | 96.26 | 99.86 | 94.81 | 0.9189 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-A.; Chen, Z.; Wang, D.; Li, D. Assessment of the X- and C-Band Polarimetric SAR Data for Plastic-Mulched Farmland Classification. Remote Sens. 2019, 11, 660. https://doi.org/10.3390/rs11060660
Liu C-A, Chen Z, Wang D, Li D. Assessment of the X- and C-Band Polarimetric SAR Data for Plastic-Mulched Farmland Classification. Remote Sensing. 2019; 11(6):660. https://doi.org/10.3390/rs11060660
Chicago/Turabian StyleLiu, Chang-An, Zhongxin Chen, Di Wang, and Dandan Li. 2019. "Assessment of the X- and C-Band Polarimetric SAR Data for Plastic-Mulched Farmland Classification" Remote Sensing 11, no. 6: 660. https://doi.org/10.3390/rs11060660
APA StyleLiu, C. -A., Chen, Z., Wang, D., & Li, D. (2019). Assessment of the X- and C-Band Polarimetric SAR Data for Plastic-Mulched Farmland Classification. Remote Sensing, 11(6), 660. https://doi.org/10.3390/rs11060660