Editorial for the Special Issue “Optical and Laser Remote Sensing of the Atmosphere”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Killinger, D.K.; Mooradian, A. Optical and Laser Remote Sensing; Springer: Berlin, Heidelberg, 1983. [Google Scholar]
- Weitkamp, C. Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere; Springer: Berlin, Heidelberg, 2005. [Google Scholar]
- Prasad, S.; Bruce, L.; Chanussot, J. Optical Remote Sensing; Springer: Berlin, Heidelberg, 2011. [Google Scholar]
- Fernald, F.G.; Herman, B.M.; Reagan, J.A. Determination of Aerosol Height Distributions by Lidar. J. Appl. Meteorol. 1972, 11, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Huffaker, R.M.; Post, M.J.; Lawrence, T.R.; Priestley, J.T. Feasibility studies for a global wind measuring satellite system (Windsat): analysis of simulated performance. Appl. Opt. 1984, 23, 2523–2533. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principals of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Svanberg, S. Fluorescence Lidar monitoring of Vegetation Status. Phys. Scr. 1995, T58, 79–88. [Google Scholar] [CrossRef]
- Menzies, R.T.; Chahine, M.T. Remote Atmospheric Sensing with an Airborne Laser Absorption Spectrometer. Appl. Opt. 1974, 13, 2840–2849. [Google Scholar] [CrossRef] [PubMed]
- Killinger, D.K.; Menyuk, N. Laser Remote Sensing of the Atmosphere. Science 1987, 235, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.; Silva, J.; Marrero, J.; Taha, G.; Landulfo, E. Synergetic Aerosol Layer Observation After the 2015 Calbuco Volcanic Eruption Event. Remote Sens. 2019, 11, 195. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Liu, Z.; Zhang, J.; Qie, L.; Xie, Y.; Hou, W.; Wang, Y.; Ye, Z. Retrieval of the Fine-Mode Aerosol Optical Depth over East China Using a Grouped Residual Error Sorting (GRES) Method from Multi-Angle and Polarized Satellite Data. Remote Sens. 2018, 10, 1838. [Google Scholar] [CrossRef]
- Di, H.; Wang, Q.; Hua, H.; Li, S.; Yan, Q.; Liu, J.; Song, Y.; Hua, D. Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data. Remote Sens. 2018, 10, 1753. [Google Scholar] [CrossRef]
- Marksteiner, U.; Lemmerz, C.; Lux, O.; Rahm, S.; Schafler, A.; Witschas, B.; Reitebuch, O. Calibrations and Wind Observations of an Airborne Direct-Detection Wind LiDAR Supporting ESA’s Aeolus Mission. Remote Sens. 2018, 10, 2056. [Google Scholar] [CrossRef]
- Saito, Y.; Ichihara, K.; Morishita, K.; Uchiyama, K.; Kobayashi, F.; Tomida, T. Remote Detection of the Fluorescence Spectrum of Natural Pollens Floating in the Atmosphere Using a Laser-Induced-Fluorescence Spectrum (LIFS) Lidar. Remote Sens. 2018, 10, 1533. [Google Scholar] [CrossRef]
- Banakh, V.; Smalikho, I. Lidar Studies of Wind Turbulence in the Stable Atmospheric Boundary Layer. Remote Sens. 2018, 10, 1219. [Google Scholar] [CrossRef]
- Han, G.; Xu, H.; Gong, W.; Liu, J.; Du, J.; Ma, X.; Liang, A. Feasibility Study on Measuring Atmospheric CO2 in Urban Areas Using Spaceborne CO2-IPDA LIDAR. Remote Sens. 2018, 10, 985. [Google Scholar] [CrossRef]
- Matvienko, G.; Sukhanov, A. Application of neural networks for retrieval of the CO2 concentration at aerospace sensing by IPDA-DIAL lidar. Remote Sens. 2019, 11, 659. [Google Scholar] [CrossRef]
- Hara, Y.; Nishizawa, T.; Sugimoto, N.; Osada, K.; Yumimoto, K.; Uno, I.; Kudo, R.; Ishimoto, H. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sens. 2018, 10, 937. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Killinger, D.K.; Menzies, R.T. Editorial for the Special Issue “Optical and Laser Remote Sensing of the Atmosphere”. Remote Sens. 2019, 11, 742. https://doi.org/10.3390/rs11070742
Killinger DK, Menzies RT. Editorial for the Special Issue “Optical and Laser Remote Sensing of the Atmosphere”. Remote Sensing. 2019; 11(7):742. https://doi.org/10.3390/rs11070742
Chicago/Turabian StyleKillinger, Dennis K., and Robert T. Menzies. 2019. "Editorial for the Special Issue “Optical and Laser Remote Sensing of the Atmosphere”" Remote Sensing 11, no. 7: 742. https://doi.org/10.3390/rs11070742
APA StyleKillinger, D. K., & Menzies, R. T. (2019). Editorial for the Special Issue “Optical and Laser Remote Sensing of the Atmosphere”. Remote Sensing, 11(7), 742. https://doi.org/10.3390/rs11070742