An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping
Abstract
:1. Introduction
2. Methods
2.1. A Brief Overview of the ESTARFM
2.2. Theoretical Basis of the SADFAET
2.2.1. Selection of Similar Neighboring Pixels
- (1).
- For each fine-resolution pixel at tm and tn, record T* and the LST retrieved from remote sensing data (TR).
- (2).
- For a given pixel, if the remotely sensed TR at a fine resolution at tm is equal to or greater than T* and TR at tn is equal to or greater than T* as well, this pixel is considered to fall into CLASS 1, where no water is available to be evaporated for the soil component and the vegetation component transpires with a certain degree of soil water stress between tm and tn.
- (3).
- If TR at tm is greater than T* but TR at tn is less than T* at the same time, this pixel is considered to fall into CLASS 2, where the surface soil moisture is increasing, and the vegetation transpiration is increasing to the potential transpiration amount between tm and tn.
- (4).
- If TR at tm is less than T* but TR at tn is greater than T* at the same time, the pixel is considered to fall into CLASS 3, where the surface soil moisture decreases to zero while the vegetation component transpires from a maximum value (i.e., the potential transpiration) to a certain degree of soil water stress between tm and tn.
- (5).
- If TR at tm is less than T* and TR at tn is less than T* as well, this pixel is considered to fall into CLASS 4, where the vegetation component transpires potentially, and the surface soil moisture is between zero and a maximum value between tm and tn.
- (6).
- Finally, compare the class (CLASS 1 through CLASS 4) of the central pixel with the given neighboring pixel. If the two pixels fall into the same class, the given neighboring pixel is considered to be a similar neighboring pixel.
2.2.2. Calculation of the Weight of the Similar Pixel
2.3. End-Member-Based Soil and Vegetation Energy Partitioning Model
2.4. Validation of the SADFAET
3. Materials
3.1. Test Sites and Ground-Based Data
3.2. Satellite Data
4. Results and Discussion
4.1. Validation of ET Estimated by the ESVEP Model
4.2. Evaluation of the Spatial Pattern of ET Fused with the SADFAET Model
4.3. Validation of ET Data Fused by the SADFAET Model Using Ground-Based Measurements
4.4. Comparison of ET Data Fused by the SADFAET and ESTARFM
4.5. Discussion
4.5.1. Uncertainties in the SADFAET
4.5.2. Improvements and Limitations of the SADFAET
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, A.; Zhao, W.; Deng, W. A Quantitative Inspection on Spatio-Temporal Variation of Remote Sensing-Based Estimates of Land Surface Evapotranspiration in South Asia. Remote Sens. 2015, 7, 4726–4752. [Google Scholar] [CrossRef] [Green Version]
- Mahour, M.; Tolpekin, V.; Stein, A.; Sharifi, A. A comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration. ISPRS J. Photogramm. Remote Sens. 2017, 126, 56–67. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int. J. Remote Sens. 1998, 19, 2477–2491. [Google Scholar] [CrossRef]
- Nichol, J. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogramm. Eng. Remote Sens. 2009, 75, 547–556. [Google Scholar] [CrossRef]
- Hong, S.-H.; Hendrickx, J.M.H.; Borchers, B. Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales. Int. J. Remote Sens. 2011, 32, 6457–6477. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R. Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Alfieri, J.G.; Gao, F.; Hain, C.; Prueger, J.H.; Evett, S.; Colaizzi, P.; Howell, T.; Chávez, J.L. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign. Adv. Water Resour. 2012, 50, 162–177. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour. Res. 2013, 49, 4672–4686. [Google Scholar] [CrossRef] [Green Version]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Quackenbush, L.J.; Dougherty, M.; Marzen, L.J. A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. Int. J. Remote Sens. 2015, 36, 115–143. [Google Scholar]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Mckee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2015, 185, 155–170. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Park, S.; Gong, H. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sens. 2016, 8, 215. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Noordman, E.; Pelgrum, H.; Davids, G.; Thoreson, B.; Allen, R. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Allen, R.G.; Robison, C.W.; Trezza, R.; Garcia, M.; Kjaersgaard, J. Comparison of evapotranspiration images from MODIS and Landsat along the Middle Rio Grande of New Mexico. In Proceedings of the 17th William T. Pecora Memorial Remote Sensing Symposium Proceedings, Denver, CO, USA, 18–20 November 2008. [Google Scholar]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Hain, C.R.; Semmens, K.A.; Kustas, W.P.; Noormets, A.; Wynne, R.H.; Thomas, V.A.; Sun, G. Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrol. Earth Syst. Sci. 2017, 21, 1017–1037. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Shen, H.; Zhang, L.; Göttsche, F.M. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sens. Environ. 2015, 156, 169–181. [Google Scholar] [CrossRef]
- Zayed, I.S.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study. Agric. Water Manag. 2016, 177, 66–76. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R.; Kjaersgaard, J. Mapping Evapotranspiration at High Resolution, Applications Manual for Landsat Satellite Imagery; University of Idaho: Kimberly, ID, USA, 2010; Volume 2, p. 248. [Google Scholar]
- Yi, Z.; Zhao, H.; Jiang, Y.; Yan, H.; Yin, C.; Huang, Y.; Zhen, H. Daily Evapotranspiration Estimation at the Field Scale: Using the Modified SEBS Model and HJ-1 Data in a Desert-Oasis Area, Northwestern China. Water 2018, 10, 640. [Google Scholar] [CrossRef]
- Yang, G.; Weng, Q.; Pu, R.; Gao, F.; Sun, C.; Li, H.; Zhao, C. Evaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE. Remote Sens. 2016, 8, 75. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, M.S.; Shi, W.-Z.; Wu, L.-X.; Qin, K. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm. Remote Sens. 2015, 7, 4424–4441. [Google Scholar] [CrossRef] [Green Version]
- Oliveraguerra, L.; Mattar, C.; Merlin, O.; DuránAlarcón, C.; SantamaríaArtigas, A.; Fuster, R. An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS J. Photogramm. Remote Sens. 2017, 128, 170–181. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Park, S.; Gong, H. Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration. ISPRS J. Photogramm. Remote Sens. 2017, 126, 79–93. [Google Scholar] [CrossRef]
- Yan, L.; Huang, C.; Hou, J.; Gu, J.; Zhu, G.; Xin, L. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agric. For. Meteorol. 2017, 244, 82–97. [Google Scholar]
- Ma, Y.; Liu, S.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Najmaddin, P.M.; Whelan, M.J.; Balzter, H. Estimating Daily Reference Evapotranspiration in a Semi-Arid Region Using Remote Sensing Data. Remote Sens. 2017, 9, 779. [Google Scholar] [CrossRef]
- Stefan, V.; Merlin, O.; Er-Raki, S.; Escorihuela, M.-J.; Khabba, S. Consistency between in situ, model-derived and high-resolution-image-based soil temperature endmembers: Towards a robust data-based model for multi-resolution monitoring of crop evapotranspiration. Remote Sens. 2015, 7, 10444–10479. [Google Scholar] [CrossRef]
- Kuriqi, A. Assessment and quantification of meteorological data for implementation of weather radar in mountainous regions. MAUSAM 2016, 67, 789–802. [Google Scholar]
- Martínez-de la Torre, A.; Blyth, E.M.; Robinson, E.L. Evaluation of drydown processes in global land surface and hydrological models using flux tower evapotranspiration. Water 2019, 11, 356. [Google Scholar] [CrossRef]
- Small, E.; Badger, A.; Abolafia-Rosenzweig, R.; Livneh, B. Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records. Remote Sens. 2018, 10, 1945. [Google Scholar] [CrossRef]
- Bruin, H.A.; Trigo, I.F. A New Method to Estimate Reference Crop Evapotranspiration from Geostationary Satellite Imagery: Practical Considerations. Water 2019, 11, 382. [Google Scholar] [CrossRef]
- Zhu, X.L.; Jin, C.; Feng, G.; Chen, X.H.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Emelyanova, I.V.; Mcvicar, T.R.; Niel, T.G.V.; Li, L.T.; van Dijk, A.I. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B.; Huang, L. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric. Water Manag. 2017, 188, 1–11. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.L. An End-Member-Based Two-Source Approach for Estimating Land Surface Evapotranspiration From Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5818–5832. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A.E. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [Google Scholar] [CrossRef]
- Ghulam, A.; Li, Z.-L.; Qin, Q.; Tong, Q.; Wang, J.; Kasimu, A.; Zhu, L. A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index. Sci. China Ser. D Earth Sci. 2007, 50, 1359–1368. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Qin, Q.; Liu, L. VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int. J. Remote Sens. 2013, 34, 4585–4609. [Google Scholar] [CrossRef]
- Talsma, C.; Good, S.; Miralles, D.; Fisher, J.; Martens, B.; Jimenez, C.; Purdy, A. Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models. Remote Sens. 2018, 10, 1601. [Google Scholar] [CrossRef]
- Campo-Bescós, M.A.; Muñoz-Carpena, R.; Southworth, J.; Zhu, L.; Waylen, P.R.; Bunting, E. Combined Spatial and Temporal Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna. Remote Sens. 2013, 5, 6513–6538. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Norman, J.M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agron. J. 2000, 92, 847–854. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.; Jia, Z.; Zhu, M.; Bai, J.; Wang, J. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Muoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
Ground Sites | Landscape | Longitude | Latitude | Elevation (m) | Observation Instrument |
---|---|---|---|---|---|
Sidaoqiao | tamarix | 101.1374 E | 42.0012 N | 873 | LAS/EC |
Populus euphratica | populus euphratica | 101.1239 E | 41.9932 N | 876 | EC |
Mixed Forest | populus euphratica and tamarix | 101.1335 E | 41.9903 N | 874 | EC |
Barren Land | bare land | 101.1326 E | 41.9993 N | 878 | EC |
Cropland | melon | 101.1338 E | 42.0048 N | 875 | EC |
Data Type | MODIS (Horizontal 25, Vertical 04) | Landsat 8 (Path 133/134, Row 031) | ||
---|---|---|---|---|
MOD09GA | MOD021KM etc. | OLI | TIRS | |
Resolution | 500 m | 1000 m | 30 m | 30 m (resample) |
Day of year (DOY) | 096–304 | 096, 103, 135, 144, 160, 176, 199, 215, 231, 240, 247, 256, 288, 295, 304, |
DOY of MODIS ET (1 km) | DOY of Landsat 8 ET (30 m) | DOY of Fusion Results and Validation (30 m) |
---|---|---|
96/103/135 | 96/135 | 103 |
103/135/144 | 103/144 | 135 |
135/144/176 | 135/176 | 144 |
144/176/199 | 144/199 | 176 |
176/199/231 | 176/231 | 199 |
199/231/240 | 199/240 | 231 |
231/240/247 | 231/247 | 240 |
240/247/256 | 240/256 | 247 |
247/256/288 | 247/288 | 256 |
256/288/295 | 256/295 | 288 |
Variable | MODIS | Landsat 8 |
---|---|---|
NDVI | MOD13A2 | OLI Band 4, Band 5 |
LST | MOD11A1 | TIRS Band 10, mono-window algorithm [51] |
SM | - | OLI Band 7, OPTRAM [50] |
Ground Sites | Mean O (W/m2) | Mean P (W/m2) | MB (W/m2) | MPE (%) | RMSE (W/m2) |
---|---|---|---|---|---|
Sidaoqiao | 217.5 | 189.7 | −27.8 | −16 | 42.7 |
Populus euphratica | 160.7 | 144.7 | −16.0 | −12 | 40.4 |
Mixed Forest | 155.4 | 154.2 | −1.2 | −3 | 44.8 |
Barren Land | 70.5 | 86.7 | 16.2 | 22 | 24.6 |
Cropland | 135.1 | 120.3 | −14.8 | −14 | 31.8 |
Average | 147.8 | 139.1 | −8.7 | −5 | 40.9 |
DOY | Item | Mean (W/m2) | Max (W/m2) | Min (W/m2) | SD (W/m2) | R |
---|---|---|---|---|---|---|
May 15 | Fused ET | 30.06 | 45.09 | 10.49 | 16.17 | 0.47 |
Retrieved ET | 28.48 | 40.84 | 12.76 | 17.58 | ||
July 18 | Fused ET | 74.61 | 99.26 | 38.29 | 38.85 | 0.49 |
Retrieved ET | 76.69 | 108.05 | 34.32 | 40.55 | ||
August 28 | Fused ET | 69.58 | 67.21 | 32.61 | 48.21 | 0.46 |
Retrieved ET | 68.90 | 83.09 | 29.21 | 48.78 |
Ground Sites | Mean O (W/m2) | MB (W/m2) | MPE (%) | RMSE (W/m2) |
---|---|---|---|---|
Sidaoqiao | 250.0 | −27.5 | −11 | 60.6 |
Populus euphratica | 174.2 | −18.3 | −11 | 50.7 |
Mixed Forest | 179.6 | −19.5 | −11 | 50.5 |
Barren Land | 81.9 | 18.0 | 22 | 25.1 |
Cropland | 155.1 | −18.6 | −12 | 41.4 |
Average | 168.2 | −13.1 | −5 | 45.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Tang, R.; Li, Z.-L.; Jiang, Y.; Liu, M.; Niu, L. An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping. Remote Sens. 2019, 11, 761. https://doi.org/10.3390/rs11070761
Wang T, Tang R, Li Z-L, Jiang Y, Liu M, Niu L. An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping. Remote Sensing. 2019; 11(7):761. https://doi.org/10.3390/rs11070761
Chicago/Turabian StyleWang, Tong, Ronglin Tang, Zhao-Liang Li, Yazhen Jiang, Meng Liu, and Lu Niu. 2019. "An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping" Remote Sensing 11, no. 7: 761. https://doi.org/10.3390/rs11070761
APA StyleWang, T., Tang, R., Li, Z. -L., Jiang, Y., Liu, M., & Niu, L. (2019). An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping. Remote Sensing, 11(7), 761. https://doi.org/10.3390/rs11070761