Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data and Data Pre-Processing
2.2.1. Sentinel-2 and DEM
2.2.2. Reference Data
2.3. Classification
2.4. Accuracy Assessment
3. Results
3.1. Forest Cover Mapping
3.2. Forest Type
3.3. Tree Species Identification
3.4. Variable Importance for Tree Species Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franklin, S.E. Remote Sensing for Sustainable Forest Management; Lewis Publishers; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2001. [Google Scholar]
- UNFCCC. Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amounts. 92-9219-055-5. 2008. Available online: https://unfccc.int/resource/docs/publications/08_unfccc_kp_ref_manual.pdf (accessed on 18 December 2018).
- IPCC. Global Warming of 1.5 °C, an IPCC Special Report on the Impacts of Global Warming of 1.5°C Above pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Naudts, K.; Chen, Y.; McGrath, M.J.; Ryder, J.; Valade, A.; Otto, J.; Luyssaert, S. Europe’s forest management did not mitigate climate warming. Science 2016, 351, 597–600. [Google Scholar] [CrossRef]
- Bengtsson, J.; Sven, G.N.; Alain, F.; Paolo, M. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Vihervaara, P.; Auvinen, A.-P.; Mononen, L.; Törmä, M.; Ahlroth, P.; Anttila, S.; Böttcher, K.; Forsius, M.; Heino, J.; Heliölä, J.; et al. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 2017, 10, 43–59. [Google Scholar] [CrossRef]
- Proença, V.; Martin, L.J.; Pereira, H.M.; Fernandez, M.; McRae, L.; Belnap, J.; Böhm, M.; Brummitt, N.; García-Moreno, J.; Gregory, R.D.; et al. Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biol. Conserv. 2017, 213, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Bergseng, E.; Ørka, H.O.; Næsset, E.; Gobakken, T. Assessing forest inventory information obtained from different inventory approaches and remote sensing data sources. Ann. For. Sci. 2015, 75, 33–45. [Google Scholar] [CrossRef]
- GUS. Forestry 2017; Central Satatistical Office: Warsaw, Poland, 2017. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5510/1/13/1/lesnictwo_2017.pdf (accessed on 15 January 2019).
- Ziemblicki, M.H. Uwarunkowania prawne nadzoru nad lasami niestanowiącymi własności Skarbu Państwa/Legal conditions of supervision over private forests. Białostockie Studia Prawnicze 2015, 297–305. [Google Scholar] [CrossRef]
- Hościło, A.; Mirończuk, A.; Lewandowska, A. Określenie rzeczywistej powierzchni lasów w Polsce na podstawie dostępnych danych przestrzennych/Determination of the actual forest area in Poland based on the available spatial datasets. Sylwan 2016, 160, 627–634. [Google Scholar]
- Jabłoński, M. Powierzchnia gruntów leśnych—Przyczyny zmian i spójność źródeł danych. Wiadomości Statystyczne 2015, 11, 54–68. [Google Scholar]
- Jabłoński, M.; Mionskowski, M.; Budniak, P. Forest area in Poland based on national forest inventory. Sylwan 2018, 162, 365–372. [Google Scholar]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, C.; Psomas, A. Mapping Secondary Forest Succession on Abandoned Agricultural Land with LiDAR Point Clouds and Terrestrial Photography. Remote Sens. 2015, 7, 8300–8322. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, R. Afforestation and secondary succession. Leśne Prace Badawcze 2014, 75, 423–427. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wezyk, P.; Price, B. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2018, 88, 62–72. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Hościło, A.; Mirończuk, A.; Leszczyńska, A. The High Resolution Layer (HRL) Verification Report for Dominant Leaf Type—Poland. Unpublished Report. 2018. [Google Scholar]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J. Photogramm. Remote Sens. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Gärtner, P.; Förster, M.; Kleinschmit, B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sens. Environ. 2016, 177, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For. Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Ji, W.; Wang, L. Phenology-guided saltcedar (Tamarix spp.) mapping using Landsat TM images in western U.S. Remote Sens. Environ. 2016, 173, 29–38. [Google Scholar] [CrossRef]
- Castillo, E.M.D.; García-Martin, A.; Aladren, L.A.L.; Luis, M.D. Evaluation of forest cover change using remote sensing techniquesand landscape metrics in Moncayo Natural Park (Spain). Appl. Geogr. 2015, 62, 247–255. [Google Scholar] [CrossRef]
- Liu, Y.A.; Gong, W.S.; Hu, X.Y.; Gong, J.Y. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef]
- Sheeren, D.; Fauvel, M.; Josipović, V.; Lopes, M.; Planque, C.; Willm, J.; Dejoux, J.-F. Tree Species Classification in Temperate Forests Using Formosat-2 Satellite Image Time Series. Remote Sens. 2016, 8, 734. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 User Handbook. 2015. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 10 January 2018).
- Escobar-Flores, J.G.; Lopez-Sanchez, C.A.; Sandoval, S.; Marquez-Linares, M.A.; Wehenkel, C. Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing. Peerj 2018, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 2018, 42, 32–38. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Wittke, S.; Yu, X.; Karjalainen, M.; Hyyppä, J.; Puttonen, E. Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 167–178. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Isuhuaylas, L.A.V.; Hirata, Y.; Santos, L.C.V.; Torobeo, N.S. Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms. Remote Sens. 2018, 10, 782. [Google Scholar] [CrossRef]
- Kondracki, J. Geografia Regionalna Polski; PWN: Warszawa, Poland, 2002. [Google Scholar]
- Szymański, S. Ekologiczne Podstawy Hodowli Lasu; PWN: Warszawa, Poland, 2000. [Google Scholar]
- GUS. Local Data Bank. 2017. Available online: https://bdl.stat.gov.pl/ (accessed on 10 December 2018).
- Schieber, B.; Kubov, M.; Janik, R. Effects of Climate Warming on Vegetative Phenology of the Common Beech Fagus sylvatica in a Submontane Forest of the Western Carpathians: TwoDecade Analysis. Pol. J. Ecol. 2017, 65, 339–351. [Google Scholar] [CrossRef]
- Jabłońska, K.; Kwiatkowska-Falińska, A.; Czernecki, B.; Walawender, J.P. Changes in spring and summer phenology in Poland—Responses of selected plant species to air temperature variations. Pol. J. Ecol. 2015, 63, 311–319. [Google Scholar] [CrossRef]
- Sen2Cor. STEP Science Toolbox Exploitation Platform. Available online: http://step.esa.int/main/third-party-plugins-2/sen2cor/ (accessed on 20 April 2018).
- BULiGL. The National Forest Inventory, Results of Cycle II (2012-2014) (Wielkoobszarowa Inwentaryzacja Stanu Lasów—Wyniki II Cyklu, Lata 2010–2014); Oficyna Wydawnicza FOREST, Ed.; Biuro Urządzania Lasu i Gospodarki Leśnej: Sękoci Stary, Poland, 2015. [Google Scholar]
- Michel, A.; Seidling, W. Forest Condition in Europe: 2017 Technical Report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP); Michel, A., Seidling, W., Eds.; BFW-Dokumentation 24/2017; BFW Austrian Research Centre for Forests: Vienna, Austria, 2017; p. 123. [Google Scholar]
- BULiGL. Wieloobszarowa Inwentaryzacja Stanu Lasu w Polsce Wyniki za Okres 2013–2017; BULiGL: Sękocin Stary, Poland, 2018. [Google Scholar]
- Grodzki, W.; Fronek, W.G. Effect of forest protection strategy on the occurrence of the spruce bark beetle Ips typographus (L.) in the Kogcieliska Valley in the Tatra National Park. Sylwan 2018, 162, 628–637. [Google Scholar]
- Potterf, M.; Nikolov, C.; Kocicka, E.; Ferencik, J.; Mezei, P.; Jakus, R. Landscape-level spread of beetle infestations from windthrown- and beetle-killed trees in the non-intervention zone of the Tatra National Park, Slovakia (Central Europe). For. Ecol. Manag. 2019, 432, 489–500. [Google Scholar] [CrossRef]
- Fleischer, P.; Koren, M.; Skvarenina, J.; Kunca, V. Risk Assessment of the Tatra Mountains Forest; Springer Science+Buisness Media: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Danielewicz, W. Encyklopedia Leśna. In Encyklopedia Leśna; Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu: Nowy Bedoń, Poland, 2018; Available online: https://www.encyklopedialesna.pl/ (accessed on 12 January 2019).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction; Springer Science+Buisness Media: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Waske, B.; Linden, S.v.d.; Oldenburg, C.; Jakimow, B.; Rabe, A.; Hostert, P. imageRFeA user-oriented implementation for remote sensing image analysiswith Random Forests. Environ. Model. Softw. 2012, 35, 192–193. [Google Scholar] [CrossRef]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef] [Green Version]
- Jakimow, B.; Oldenburg, C.; Rabe, A.; Waske, B.; van der Linden, S.; Hostert, P. Manual for Application: imageRF (1.1); Universität Bonn, Institute of Geodesy and Geo Information, Department of Photogrammetry and Humboldt-Universität zu Berlin, Geomatics Lab.: Berlin, Germany, 2012. [Google Scholar]
- Act, F. Forest Act of 28 September 1991/Ustawa o Lasach z Dnia 28 Września 1991 r. Dz. U. 1991, 101. [Google Scholar]
- Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests 2015, 6, 1982. [Google Scholar] [CrossRef]
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
Forest Type | Common Tree Species | National Forest Inventory (NFI) | Digital Forest Map (DFM) | Total |
---|---|---|---|---|
Coniferous | Spruce | 54 | 196 | 250 |
Pine | 17 | 201 | 218 | |
Fir | 51 | 200 | 251 | |
Larch | 3 | 200 | 203 | |
Broadleaf | Beech | 34 | 200 | 234 |
Oak | 2 | 111 | 113 | |
Alder | 2 | 200 | 202 | |
Birch | 3 | 113 | 116 | |
Total | 166 | 1421 | 1587 |
Sentinel-2 | Sentinel-2 + Topography 1 | |||
---|---|---|---|---|
Forest type | Forest | Non-Forest | Forest | Non-Forest |
UA (%) | 98.92 | 96.37 | 99.13 | 96.39 |
PA (%) | 98.49 | 97.38 | 98.49 | 97.82 |
F1 (%) | 98.70 | 96.88 | 98.81 | 97.14 |
Overall Accuracy | 98.17 | 98.32 | ||
Kappa Accuracy | 95.58 | 95.95 | ||
Avg. F1 Accuracy | 97.79 | 98.06 |
Forest type | Sentinel-2 | Sentinel-2 + Topography | ||
---|---|---|---|---|
Coniferous | Broadleaf | Coniferous | Broadleaf | |
UA (%) | 96.46 | 92.54 | 96.21 | 92.86 |
PA (%) | 94.65 | 95.02 | 94.92 | 94.64 |
F1 | 95.55 | 93.76 | 95.56 | 93.74 |
Overall Accuracy | 94.80 | 94.80 | ||
Kappa Accuracy | 89.31 | 89.30 | ||
Avg. F1 Accuracy | 94.65 | 94.65 |
Sentinel-2 | Sentinel-2 + Topography | Sentinel-2 + Topography with Stratification | |||||||
---|---|---|---|---|---|---|---|---|---|
Tree species | UA % | PA % | F1 % | UA % | PA % | F1 % | UA % | PA % | F1 % |
Beech | 85.57 | 88.30 | 86.91 | 86.87 | 91.49 | 89.12 | 92.31 | 93.33 | 92.82 |
Birch | 81.82 | 67.50 | 73.97 | 91.18 | 77.50 | 83.78 | 90.63 | 82.86 | 86.57 |
Oak | 80.43 | 80.43 | 80.43 | 93.02 | 86.96 | 89.89 | 95.12 | 86.67 | 90.70 |
Alder | 71.43 | 80.25 | 75.58 | 81.93 | 83.95 | 82.93 | 83.13 | 89.61 | 86.25 |
Fir | 82.02 | 70.87 | 76.04 | 79.05 | 80.58 | 79.81 | 79.41 | 80.20 | 79.80 |
Larch | 68.32 | 84.15 | 75.41 | 68.27 | 86.59 | 76.34 | 79.76 | 91.78 | 85.35 |
Pine | 73.17 | 68.97 | 71.01 | 82.93 | 78.16 | 80.47 | 84.15 | 80.23 | 82.14 |
Spruce | 68.75 | 64.71 | 66.67 | 84.71 | 70.59 | 77.01 | 85.06 | 77.89 | 81.32 |
OverallAccuracy % | 75.59 | 81.73 | Broadleaf | 89.47 | |||||
Coniferous | 81.97 | ||||||||
Kappaaccuracy % | 71.79 | 78.88 | Broadleaf | 85.22 | |||||
Coniferous | 75.90 | ||||||||
Avg. F1 Accuracy % | 75.75 | 82.42 | Broadleaf | 89.08 | |||||
Coniferous | 82.15 |
Without Stratification | Beech | Birch | Oak | Alder | Fir | Larch | Pine | Spruce |
---|---|---|---|---|---|---|---|---|
Beech | 86 | 1 | 0 | 6 | 0 | 2 | 0 | 4 |
Birch | 0 | 31 | 2 | 1 | 0 | 0 | 0 | 0 |
Oak | 0 | 1 | 40 | 0 | 0 | 0 | 0 | 2 |
Alder | 3 | 1 | 3 | 68 | 2 | 3 | 1 | 2 |
Fir | 1 | 0 | 0 | 0 | 83 | 1 | 9 | 11 |
Larch | 3 | 6 | 1 | 5 | 8 | 71 | 6 | 4 |
Pine | 0 | 0 | 0 | 1 | 2 | 4 | 68 | 7 |
Spruce | 1 | 0 | 0 | 0 | 8 | 1 | 3 | 72 |
With Stratification | Beech | Birch | Oak | Alder | Fir | Larch | Pine | Spruce | |
---|---|---|---|---|---|---|---|---|---|
Beech | 84 | 1 | 0 | 6 | Fir | 81 | 1 | 9 | 11 |
Birch | 0 | 29 | 2 | 1 | Larch | 9 | 67 | 6 | 2 |
Oak | 0 | 1 | 39 | 1 | Pine | 2 | 3 | 69 | 8 |
Alder | 6 | 4 | 4 | 69 | Spruce | 9 | 2 | 2 | 74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. https://doi.org/10.3390/rs11080929
Hościło A, Lewandowska A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sensing. 2019; 11(8):929. https://doi.org/10.3390/rs11080929
Chicago/Turabian StyleHościło, Agata, and Aneta Lewandowska. 2019. "Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data" Remote Sensing 11, no. 8: 929. https://doi.org/10.3390/rs11080929
APA StyleHościło, A., & Lewandowska, A. (2019). Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sensing, 11(8), 929. https://doi.org/10.3390/rs11080929