Atmospheric Transmittance Model Validation for CSP Tower Plants
Abstract
:1. Introduction
- A similar system is being investigated by [6] using reflector telescopes and a photo diode array spectrometer to measure the extinction in solar tower plants.
- In [7], a diffusometer is used to estimate atmospheric extinction levels at two different sites.
- Ref. [8] showed, based on monochromatic ceilometer measurements, that Sahara-dust outbreak events in South-East Spain can increase the monochromatic attenuation for slant ranges of 1 km up to 25%.
- Ref. [9] derives the atmospheric extinction from remote sensing data from MODIS and AERONET for Morocco.
- Ref. [10] models the atmospheric extinction for different atmospheric conditions and site elevation with the MODTRAN radiative transfer code. The simulations showed that the solar irradiance can be reduced up to 30% under moderately turbid conditions.
- Radiation losses caused only by water vapor are analyzed by [11].
- This relationship is also investigated in [12] using artificial neural networks to express the non-linear relationship between atmospheric extinction and water vapor content in the atmosphere.
2. Transmittance Model Based on DNI Measurements
3. Transmittance Model Validation
3.1. Aerosol Height Profiles
- An extinction profile with a constant aerosol extinction coefficient up to 1 km above the ground and no extinction above 1 km (“TM-H1000”)
- The extinction height profile for each validation site of the LIVAS climatology of [28] (description of modification of LIVAS profile can be found in Section 4.1.1 (“TM-LIVAS”).
- The constant extinction profile as in TM-H1000 of [21] is scaled accordingly to the BLH instead of 1 km. The BLH has been extracted from the ERA-Interim reanalysis data set of ECMWF ([29]). It is assumed that the total amount of aerosol particles is homogeneously distributed in the lowest layer above ground up to the site- and time-dependent BLH (“TM-BLH”).
3.2. Reference Data Set
4. Results and Discussion of Transmittance Model Validation
4.1. Discussion of Extinction Height Profiles
4.1.1. Comparison of Average LIVAS Extinction Profiles for PSA, MIS and ZAG
4.1.2. Analysis of Diurnal and Annual Course of BLH from ECMWF and Ceilometer Aerosol Layer Measurements at PSA
4.1.3. Comparison of LIVAS Profile with Mean Ceilometer LAL and BLH of ECMWF at PSA
4.2. Comparison of Average ABC Corrected for PSA, MIS and ZAG
4.3. Transmittance Model Validation with ABC Corrected for PSA, MIS and ZAG
4.3.1. Average of Transmittance Model
4.3.2. Mean Bias Error and RMSE of
4.3.3. Annual Course of TM Performance
4.4. Transmittance Model Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | absorption and broadband correction |
afglms | mid-latitude summer standard atmosphere |
AOD | aerosol optical depth |
BLH | boundary layer height |
CSP | concentrated solar power |
DNI | direct normal irradiance |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EPC | engineering, procurement and construction |
LAL | lowest aerosol layer |
MBE | mean bias error |
MIS | Missour, Morocco |
MOR | meteorological optical range |
PSA | Plataforma Solar de Almería |
RMSE | root mean square error |
SZA | solar zenith angle |
broadband transmittance for a slant range of 1 km | |
TMY | typical meteorological year |
TM | transmittance model |
ZAG | Zagora, Morocco |
References
- IRENA. Africa 2030: Roadmap for a Renewable Energy Future; Technical report; International Renewable Energy Agency: Abu Dhabi, UAE, 2015. [Google Scholar]
- Hanrieder, N. Determination of Atmospheric Extinction for Solar Tower Plants. Ph.D. Thesis, RWTH Aachen University, DLR, Aachen, Germany, 2016. [Google Scholar]
- Hanrieder, N.; Wilbert, S.; Mancera Guevara, D.; Buck, R.; Giuliano, S.; Pitz-Paal, R. Atmospheric extinction in solar tower plants—A review. Sol. Energy 2017, 152, 193–207. [Google Scholar] [CrossRef]
- Ballestrín, J.; Carra, M.E.; Enrique, R.; Monterreal, R.; Fernández-Reche, J.; Polo, J.; Casanova, M.; Barbero, F.; Marzo, A. Diagnosis of a lambertian target in solar context. Measurement 2018, 119, 265–269. [Google Scholar] [CrossRef]
- Ballestrín, J.; Monterreal, R.; Carra, M.; Fernández-Reche, J.; Polo, J.; Enrique, R.; Rodríguez, J.; Casanova, M.; Barbero, F.; Alonso-Montesinos, J.; et al. Solar extinction measurement system based on digital cameras. Application to solar tower plants. Renew. Energy 2018, 125, 648–654. [Google Scholar] [CrossRef]
- Sánchez, M.; Fernández-Peruchena, C.; Bernardos, A.; Chueca, R.; Sainas, I. High-accuracy real-time monitoring of solar radiation attenuation in commercial solar towers. In Proceedings of the SolarPACES 2018, Casablanca, Morocco, 2–5 October 2018. [Google Scholar]
- Elias, T.; Ramon, D.; Dubus, L.; Brau, J.; Langouet, H. Instrumental Set-up to Estimate the Atmospheric Attenuation along the Slant Path of Concentrated Solar Plants. In Proceedings of the Poster, SolarPACES 2017, Santiago de Chile, Chile, 26–29 September 2017; Available online: https://aip.scitation.org/doi/10.1063/1.5067190 (accessed on 3 May 2019).
- Barbero, F.; Alonso-Montesinos, J.; Batlles, F.; Polo, J.; López, G.; Bosch, J.; Ballestrín, J.; Carra, E.; Fernández-Reche, J. Evolution of the aerosol extinction coefficient at 100 m above ground during an episode of Saharan dust intrusion as derived from data registered by a ceilometer in Almería (SE Spain). In Proceedings of the SolarPACES 2018, Casablanca, Morocco, 2–5 October 2018. [Google Scholar]
- Elias, T.; Ramon, D.; Garnero, M.A.; Dubus, L.; Bourdil, C. Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: Computation of both DNI and slant path transmittance. In Proceedings of the SolarPACES 2017, Santigo de Chile, Chile, 26–29 September 2017. [Google Scholar]
- Lopez, G.; Gueymard, C.; Bosch, J.L. Evaluation of solar energy losses for the heliostat-to-receiver path of a tower solar plant for different aerosol models. In Proceedings of the Solar World Congress 2017, Abu Dhabi, UAE, 29 October–2 November 2017. [Google Scholar]
- Gueymard, C.; Lopez, G.; Rapp-Arraras, I. Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor. In Proceedings of the SolarPACES 2016, Abu Dhabi, UAE, 11–14 October 2016. [Google Scholar]
- Lopez, G.; Gueymard, C.; Bosch, J.L.; Rapp-Arraras, I.; Alonso-Montesinos, J.; Pulido-Calvo, I.; Ballestrín, J.; Polo, J.; Barbero, J. Modeling water vapor impact on the solar energy reaching the receiver of a solar tower plant by means of artificial neural networks. Sol. Energy 2018, 169, 34–39. [Google Scholar] [CrossRef]
- Carra, E.; Ballestrín, J.; Polo, J.; Barbero, F.; Fernández-Reche, J. Atmospheric extinction levels of solar radiation at Plataforma Solar de Almería. Application to solar thermal electric plants. Energy 2018, 145, 400–407. [Google Scholar] [CrossRef]
- Polo, J.; Ballestrín, J.; Carra, E. Sensitivity study for modelling atmospheric attenuation of solar radiation with radiative transfer models and the impact in solar tower plant production. Sol. Energy 2016, 134, 219–227. [Google Scholar] [CrossRef]
- Polo, J.; Alonso-Montesinos, J.; López-Rodriguez, G.; Bosch, J.; Barbero, F.; Carra, E.; Fernández-Reche, J.; Batlles, F.; Ballestrín, J. Modelling atmospheric attenuation at different AOD time-scales in yield performance of solar tower plants. In Proceedings of the SolarPACES 2018, Casablanca, Morocco, 2–5 October 2018. [Google Scholar]
- Polo, J.; Ballestrín, J.; Alonso-Montesinos, J.; López-Rodriguez, G.; Barbero, F.; Carra, E.; Fernández-Reche, J.; Bosch, J.; Batlles, F. Analysis of solar tower plant performance influenced by atmospheric attenuation at different temporal resolutions related to aerosol optical depth. Sol. Energy 2018, 157, 803–810. [Google Scholar] [CrossRef]
- Mancera Guevara, D.; Schrödter-Homscheidt, M.; Popp, T.; Heinemann, D. Vertical aerosol concentrations in the lowest 300m of the troposphere for Solar Tower Plants assessment from CALIPSO satellite and ECMWF-MACC data. In Proceedings of the SolarPACES 2017, Santiago de Chile, Chile, 26–29 September 2017. [Google Scholar]
- Elias, T.; Ramon, D.; Brau, J.; Moulana, M. Sensitivity of the solar resource in solar tower plants to aerosols and water vapor. In Proceedings of the SolarPACES 2018, Casablanca, Morocco, 2–5 October 2018. [Google Scholar]
- Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J. Atmospheric extinction in solar tower plants: Absorption and broadband correction for MOR measurements. Atmos. Meas. Tech. 2015, 8, 1–14. [Google Scholar] [CrossRef]
- Schüler, D.; Wilbert, S.; Geuder, N.; Affolter, R.; Wolfertstetter, F.; Prahl, C.; Röger, M.; Schroedter-Homscheidt, M.; Ghennioui, A.; Allah Guizani, A.; et al. The enerMENA Meteorological Network—Solar Radiation Measurements in the MENA region. AIP Conf. Proc. 2016, 1734, 150008. [Google Scholar]
- Hanrieder, N.; Sengupta, M.; Xie, Y.; Wilbert, S.; Pitz-Paal, R. Modelling beam attenuation in solar tower plants using common DNI measurements. Sol. Energy 2016, 129, 244–255. [Google Scholar] [CrossRef]
- Sengupta, M.; Wagner, M. Estimating atmospheric attenuation in central receiver systems. In Proceedings of the ASME 2012 6th International Conference on Energy Sustainability, San Diego, CA, USA, 23–26 July 2012. [Google Scholar]
- Sengupta, M.; Wagner, M. Atmospheric attenuation in central receiver systems from DNI measurements. In Proceedings of the SolarPACES 2012, Marrakech, Morocco, 11–14 September 2012. [Google Scholar]
- Sengupta, M.; Wagner, M. Impact of aerosols on atmospheric attenuation loss in central receiver systems. In Proceedings of the SolarPACES 2011, Granada, Spain, 20–23 September 2011. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and example of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Hanrieder, N.; Ghennioui, A.; Wiesinger, F.; Schade, A.; Wilbert, S. Atmospheric extinction in CSP tower plants in Morocco and Spain. In Proceedings of the SolarPACES 2017, Santigo de Chile, Chile, 26–29 September 2017. [Google Scholar]
- Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; et al. LIVAS: A 3-D multi-wavelength aerosol/cloud climatology based on CALIPSO and EARLINET. Atmos. Chem. Phys. Discuss. 2015, 15, 2247–2304. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0; Technical Report; ECMWF: Reading, UK, 2011. [Google Scholar]
- Lufft Mess-und Regeltechnik, G. Manual Ceilometer CHM 15k “NIMBUS"; Lufft: Fellbach, Germany, 2015. [Google Scholar]
- Koschmieder, H. Theorie der horizontalen Sichtweite. Beitr. Phys. Freien Atmos. 1924, 12, 33–53, 171–181. [Google Scholar]
- Griggs, D.; Jones, D.; Ouldridge, M.; Sparks, W. Instruments and Observing Methods. Report No. 41. The First WMO Intercomparison of Visibility Measurements, Final Report; Technical Report; World Meteorological Organisation: South Yorkshire, UK, 1989. [Google Scholar]
- Vaisala. User’s Guide: Present Weather Sensor FS11P; Manual; Vaisala: Vantaa, Finland, 2010. [Google Scholar]
- Anderson, G.; Clough, S.; Kneizys, F.X.; Chetwynd, J.; Shettle, E. AFGL Atmospheric Constituent Profiles (1–120 km); Environmental Research Papers, AFGL-TR-89-0110; Air Force Research Laboratory: Hanscom, MA, USA, 1986; Volume 954. [Google Scholar]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Hess, M.; Köpke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- ECMWF, E.C.f.M.R.W.F. Operational Implementation 11 July 2017. Part IV: Physical Processes; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2017. [Google Scholar]
- Dee, D.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Troen, I.; Mahrt, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound. Layer Meteorol. 1986, 37, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.; Zhang, Y.; Beljaars, A.; Golaz, J.C.; Jacobson, A.; Medeiros, B. Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res. 2012, 117, D17106. [Google Scholar] [CrossRef]
Site | PSA | MIS | ZAG |
---|---|---|---|
Latitude [°N] | 37.091 | 32.860 | 30.272 |
Longitude [°E] | −2.358 | −4.107 | −5.852 |
Altitude [m a.m.s.l.] | 500 | 1107 | 783 |
Standard aerosol type assumed in TM “H1000” | continental | continental | continental |
clean | clean | average | |
Standard aerosol type assumed in TM “LIVAS” | default | default | default |
Standard aerosol type assumed in TM “BLH” | continental | continental | continental |
clean | clean | average |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanrieder, N.; Ghennioui, A.; Alami Merrouni, A.; Wilbert, S.; Wiesinger, F.; Sengupta, M.; Zarzalejo, L.; Schade, A. Atmospheric Transmittance Model Validation for CSP Tower Plants. Remote Sens. 2019, 11, 1083. https://doi.org/10.3390/rs11091083
Hanrieder N, Ghennioui A, Alami Merrouni A, Wilbert S, Wiesinger F, Sengupta M, Zarzalejo L, Schade A. Atmospheric Transmittance Model Validation for CSP Tower Plants. Remote Sensing. 2019; 11(9):1083. https://doi.org/10.3390/rs11091083
Chicago/Turabian StyleHanrieder, Natalie, Abdellatif Ghennioui, Ahmed Alami Merrouni, Stefan Wilbert, Florian Wiesinger, Manajit Sengupta, Luis Zarzalejo, and Alexander Schade. 2019. "Atmospheric Transmittance Model Validation for CSP Tower Plants" Remote Sensing 11, no. 9: 1083. https://doi.org/10.3390/rs11091083
APA StyleHanrieder, N., Ghennioui, A., Alami Merrouni, A., Wilbert, S., Wiesinger, F., Sengupta, M., Zarzalejo, L., & Schade, A. (2019). Atmospheric Transmittance Model Validation for CSP Tower Plants. Remote Sensing, 11(9), 1083. https://doi.org/10.3390/rs11091083