Assessment of Himawari-8 AHI Aerosol Optical Depth Over Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. AHI
- The first step is to conduct a Rayleigh scattering correction for the clear sky pixels (screen the cloud pixels) by assuming that the atmospheric scattering is purely Rayleigh. Then, the pixels that have the second lowest reflectance at 470 nm within one month are composited. The pixels that have higher values at 470 nm than those at 640 nm are suspected to be influenced by residual aerosol contamination. They will be replaced by the reflectance calculated as a function of vegetation index by taking advantage of the spectral dependence of the surface reflectance [44]. These results will be treated as the real surface reflectance.
- The next step is to perform the simulation of the top of the atmosphere (TOA) reflectance by taking advantage of a radiative transfer simulation package called “the STAR (System for the Transfer of Atmospheric Radiation) series” [45,46]. To speed up the calculation, a look-up table (LUT) was constructed. The parameters applied for LUT building include surface reflectance, view geometry, wavelength, AOD, and aerosol model. It should be noted that the aerosol model is assumed to be an external mixture of fine and coarse particles. The fine aerosol model is based on the average properties of the fine mode for categories 1–6, developed by Omar [47], while two coarse models (pure marine and dust aerosol model) are based on Sayer [48] and Omar [47], respectively.
- Finally, the simulated and the observed TOA reflectance are used to build the objective function. Those parameters that minimized the objective function are the retrieved results.
2.2. AERONET
2.3. AHI and AERONET Collocation Methodology
3. AHI AOD Validation Analysis
3.1. Evaluation over Full Disk
3.2. Evaluation for Different Regions
3.2.1. East Asia
3.2.2. Southeast Asia
3.2.3. Australia
3.3. Evaluation for Different Times
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nat. Cell Boil. 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Adler, C.E.; Hadorn, G.H. The IPCC and treatment of uncertainties: Topics and sources of dissensus. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 663–676. [Google Scholar] [CrossRef]
- Shine, K.P. Radiative Forcing and Climate Change. Encycl. Aerosp. Eng. 2010, 102, 6831–6864. [Google Scholar]
- Andreae, M.O.; Jones, C.D.; Cox, P.M. Strong present-day aerosol cooling implies a hot future. Nat. Cell Boil. 2005, 435, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J. Atmospheric science: Black carbon and brown clouds. Nat. Geosci. 2008, 1, 15–16. [Google Scholar] [CrossRef]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. Discuss. 2006, 6, 613–666. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.L.; Charlson, R.J.; Schwartz, S.E.; Knutti, R.; Boucher, O.; Rodhe, H.; Heintzenberg, J. ATMOSPHERIC SCIENCE: Climate Forcing by Aerosol—A Hazy Picture. Science 2003, 300, 1103–1104. [Google Scholar] [CrossRef] [PubMed]
- Bullard, R.L.; Singh, A.; Anderson, S.M.; Lehmann, C.M.; Stanier, C.O. 10-Month characterization of the aerosol number size distribution and related air quality and meteorology at the Bondville, IL Midwestern background site. Atmos. Environ. 2017, 154, 348–361. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Biogeosci. 2003, 108, 4183. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Fujita, E.M.; Lu, Z.; Lawson, D.R.; Ashbaugh, L.L. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos. Environ. 1994, 28, 2061–2080. [Google Scholar] [CrossRef]
- Semeniuk, K.; Dastoor, A. Current state of aerosol nucleation parameterizations for air-quality and climate modeling. Atmos. Environ. 2018, 179, 77–106. [Google Scholar] [CrossRef]
- Christopher, S.A.; Wang, J. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Lett. 2003, 30, 2095. [Google Scholar]
- Mishchenko, M.I.; Geogdzhayev, I.V.; Cairns, B.; Carlson, B.E.; Chowdhary, J.; Lacis, A.A.; Liu, L.; Rossow, W.B.; Travis, L.D. Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, H.; Zheng, F. Aerosol Optical Depth Retrieval over East Asia Using Himawari-8/AHI Data. Remote Sens. 2018, 10, 137. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Eaton, B.E.; Khattatov, B.V.; Lamarque, J.-F.; Zender, C. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res. Biogeosci. 2001, 106, 7313–7336. [Google Scholar] [CrossRef] [Green Version]
- Ichoku, C.; Remer, L.A.; Kaufman, Y.J.; Levy, R.; Chu, D.A.; Tanré, D.; Holben, B.N. MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. J. Geophys. Res. Biogeosci. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Christopher, S.A.; Wang, J. Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China: Implications for satellite aerosol retrievals and radiative forcing calculations. Tellus B Chem. Phys. Meteorol. 2004, 56, 451–456. [Google Scholar] [CrossRef]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef] [Green Version]
- Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. Biogeosci. 2001, 106, 4913–4926. [Google Scholar] [CrossRef] [Green Version]
- Takemura, T.; Nakajima, T.; Higurashi, A.; Ohta, S.; Sugimoto, N. Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS). J. Geophys. Res. Biogeosci. 2003, 108, 8659. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, D.; Sohn, B.; Nakajima, T.; Takamura, T.; Takemura, T.; Choi, B.; Yoon, S. Aerosol optical properties over east Asia determined from ground-based sky radiation measurements. J. Geophys. Res. Biogeosci. 2004, 109, D02209. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.-M.; Kim, M.-K.; Lee, W.-S.; Kim, M.; Lee, W. A GCM study of effects of radiative forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal spring. Geophys. Lett. 2007, 34, 1–5. [Google Scholar]
- Eck, T.F.; Holben, B.N.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H.B.; Chatenet, B.; Gomes, L.; Zhang, X.-Y.; Tsay, S.-C.; et al. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res. Biogeosci. 2005, 110, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A.; Brechtel, F.; Kim, J.; Schmid, B.; Redemann, J.; Russell, P.B.; Quinn, P.; Holben, B.N. Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. J. Geophys. Res. Biogeosci. 2003, 108, 8657. [Google Scholar] [CrossRef]
- Knapp, K.R.; Frouin, R.; Kondragunta, S.; Prados, A. Toward aerosol optical depth retrievals over land from GOES visible radiances: Determining surface reflectance. Int. J. Sens. 2005, 26, 4097–4116. [Google Scholar] [CrossRef]
- Knapp, K.R.; Haar, T.H.V.; Kaufman, Y.J. Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America. J. Geophys. Res. Biogeosci. 2002, 107, 4055. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, J.; Ahn, M.H.; Sohn, B.J.; Lim, H.S. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. Int. J. Sens. 2008, 29, 6181–6192. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; Wang, Y.; Hou, T.; Guang, J.; Li, Y.; Xu, H.; Wu, C.; He, X.; Dong, J.; et al. Prior information supported aerosol optical depth retrieval using FY2D data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; Volume 3, pp. 2677–2680. [Google Scholar]
- Zhang, H.; Lyapustin, A.; Wang, Y.; Kondragunta, S.; Laszlo, I.; Ciren, P.; Hoff, R.M. A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States. Atmos. Chem. Phys. Discuss. 2011, 11, 11977–11991. [Google Scholar] [CrossRef] [Green Version]
- Norton, C.C.; Mosher, F.R.; Hinton, B.; Martin, D.W.; Santek, D.; Kuhlow, W. A Model for Calculating Desert Aerosol Turbidity over the Oceans from Geostationary Satellite Data. J. Appl. Meteorol. 1980, 19, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Brindley, H.; Ignatov, A.; Brindley, H. Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar reflectance bands. Remote Sens. Environ. 2006, 102, 344–363. [Google Scholar] [CrossRef]
- Yumimoto, K.; Nagao, T.; Kikuchi, M.; Sekiyama, T.; Murakami, H.; Tanaka, T.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Yan, X.; Li, Z.; Luo, N.; Shi, W.; Zhao, W.; Yang, X.; Jin, J. A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmos. Res. 2018, 207, 14–27. [Google Scholar] [CrossRef]
- Luan, Y.; Jaegle, L. Composite study of aerosol export events from East Asia and North America. Atmos. Chem. Phys. Discuss. 2013, 13, 1221–1242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, H.; Zheng, F. Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China. Adv. Meteorol. 2017, 2017, 4197652. [Google Scholar] [CrossRef]
- Yumimoto, K.; Tanaka, T.Y.; Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Maki, T. Assimilation and Forecasting Experiment for Heavy Siberian Wildfire Smoke in May 2016 with Himawari-8 Aerosol Optical Thickness. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 133–149. [Google Scholar] [CrossRef]
- Zang, L.; Mao, F.; Guo, J.; Gong, W.; Wang, W.; Pan, Z. Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. Environ. Pollut. 2018, 241, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mao, F.; Du, L.; Pan, Z.; Gong, W.; Fang, S. Deriving Hourly PM2.5 Concentrations from Himawari-8 AODs over Beijing–Tianjin–Hebei in China. Remote Sens. 2017, 9, 858. [Google Scholar] [CrossRef]
- Irie, H.; Horio, T.; Damiani, A.; Nakajima, T.Y.; Takenaka, H.; Kikuchi, M.; Khatri, P.; Yumimoto, K. Importance of Himawari-8 Aerosol Products for Energy Management System. Earozoru Kenkyu 2017, 32, 95–100. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.; Guang, J.; Li, Y.; Che, Y.; Fan, C.; Xie, Y. Dust Detection and Intensity Estimation Using Himawari-8/AHI Observation. Remote Sens. 2018, 10, 490. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for Imaging Satellite Sensors. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 193–209. [Google Scholar] [CrossRef]
- Fukuda, S.; Nakajima, T.; Takenaka, H.; Higurashi, A.; Kikuchi, N.; Nakajima, T.Y.; Ishida, H. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager. J. Geophys. Res. Atmos. 2013, 118, 13520–13531. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Biogeosci. 1997, 102, 17051–17067. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Tanaka, M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transf. 1986, 35, 13–21. [Google Scholar] [CrossRef]
- Ota, Y.; Higurashi, A.; Nakajima, T.; Yokota, T. Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere–ocean system. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 878–894. [Google Scholar] [CrossRef]
- Omar, A.H.; Won, J.; Winker, D.M.; Yoon, S.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Biogeosci. 2005, 110, 1–14. [Google Scholar] [CrossRef]
- Sayer, A.; Smirnov, A.; Hsu, N.C.; Holben, B.N. A pure marine aerosol model, for use in remote sensing applications. J. Geophys. Res. Biogeosci. 2012, 117, D05213. [Google Scholar] [CrossRef]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived from Himawari-8 Geostationary Satellite. IEEE Trans. Geosci. Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanre, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Biogeosci. 2001, 106, 12067–12097. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. Aeronet’s Version 2.0 quality assurance criteria. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Goa, India, 8 December 2006; Volume 6408. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gu, X.; Xu, H.; Yu, T.; Zheng, F. Assessment of OMI near-UV aerosol optical depth over Central and East Asia. J. Geophys. Res. Atmos. 2016, 121, 382–398. [Google Scholar] [CrossRef]
- Li, Z.; Niu, F.; Lee, K.-H.; Xin, J.; Hao, W.-M.; Nordgren, B.; Wang, Y.; Wang, P. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. Discuss. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.; Tsay, S.-C.; King, M.; Herman, J. Aerosol Properties Over Bright-Reflecting Source Regions. IEEE Trans. Geosci. Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.; Torres, O.; Jethva, H. Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res. Atmos. 2014, 119, 2457–2473. [Google Scholar] [CrossRef] [Green Version]
AERONET Sites | Longitude (Degree) | Latitude (Degree) | Elevation (m) | |
---|---|---|---|---|
1 | Beijing-CAMS | 116.317 | 39.933 | 106 |
2 | Beijing | 116.381 | 39.977 | 92 |
3 | XiangHe | 116.962 | 39.754 | 36 |
4 | Taihu | 120.215 | 31.421 | 20 |
5 | Hong_Kong_Sheung | 114.117 | 22.483 | 40 |
6 | Douliu | 120.545 | 23.712 | 60 |
7 | EPA-NCU | 121.185 | 24.968 | 144 |
8 | Taipei_CWB | 121.500 | 25.030 | 26 |
9 | Lulin | 120.874 | 23.469 | 2868 |
10 | Chiayi | 120.496 | 23.496 | 27 |
11 | Chen-Kung_Univ | 120.217 | 23.000 | 50 |
12 | Irkutsk | 103.087 | 51.800 | 670 |
13 | Ussuriysk | 132.163 | 43.700 | 280 |
14 | Dalanzadgad | 104.419 | 43.577 | 1470 |
15 | Hokkaido_University | 141.341 | 43.075 | 59 |
16 | Niigata | 138.942 | 37.846 | 10 |
17 | Noto | 137.137 | 37.334 | 200 |
18 | Chiba_University | 140.104 | 35.625 | 60 |
19 | Osaka | 135.591 | 34.651 | 50 |
20 | Shirahama | 135.357 | 33.693 | 10 |
21 | Fukuoka | 130.475 | 33.524 | 30 |
22 | Gosan_SNU | 126.162 | 33.292 | 72 |
23 | Gwangju_GIST | 126.843 | 35.228 | 52 |
24 | KORUS_Kyungpook_NU | 128.606 | 35.890 | 65 |
25 | KORUS_NIER | 126.640 | 37.569 | 26 |
26 | KORUS_UNIST_Ulsan | 129.190 | 35.582 | 106 |
27 | KORUS_Baeksa | 127.569 | 37.412 | 64 |
28 | Anmyon | 126.330 | 36.539 | 47 |
29 | Gangneung_WNU | 128.867 | 37.771 | 60 |
30 | Hankuk_UFS | 127.266 | 37.339 | 167 |
31 | Seoul_SNU | 126.951 | 37.458 | 116 |
32 | Yonsei_University | 126.935 | 37.564 | 88 |
33 | Baengnyeong | 124.630 | 37.966 | 136 |
34 | Lake_Argyle | 128.749 | −16.108 | 150 |
35 | Lake_Lefroy | 121.705 | −31.255 | 300 |
36 | Jabiru | 132.893 | −12.661 | 30 |
37 | Birdsville | 139.346 | −25.899 | 46 |
38 | Fowlers_Gap | 141.701 | −31.086 | 181 |
39 | Canberra | 149.111 | −35.271 | 600 |
40 | Pontianak | 109.191 | 0.075 | 2 |
41 | Palangkaraya | 113.946 | −2.228 | 27 |
42 | Makassar | 119.572 | −4.998 | 16 |
43 | Bandung | 107.610 | −6.888 | 826 |
44 | USM_Penang | 100.302 | 5.358 | 51 |
45 | Songkhla_Met_Sta | 100.605 | 7.184 | 15 |
46 | Bac_Lieu | 105.730 | 9.280 | 10 |
47 | Silpakorn_Univ | 100.041 | 13.819 | 72 |
48 | Ubon_Ratchathani | 104.871 | 15.246 | 120 |
49 | Nong_Khai | 102.717 | 17.877 | 175 |
50 | Omkoi | 98.432 | 17.798 | 1120 |
51 | Chiang_Mai_Met_Sta | 98.972 | 18.771 | 312 |
52 | Luang_Namtha | 101.416 | 20.931 | 557 |
53 | Son_La | 103.905 | 21.332 | 683 |
54 | NGHIA_DO | 105.800 | 21.048 | 40 |
55 | Bhola | 90.750 | 22.167 | 3 |
56 | Dhaka_University | 90.398 | 23.728 | 34 |
57 | Pokhara | 83.971 | 28.151 | 807 |
58 | Gandhi_College | 84.128 | 25.871 | 60 |
Sites | N | MAD 1 | SE | SDEV | RMSE | y-Intercept | Slope | R | RL | RU |
---|---|---|---|---|---|---|---|---|---|---|
Beijing-CAMS | 1330 | 0.13 | 0.003 | 0.12 | 0.17 | 0.07 | 0.87 | 0.90 | 0.89 | 0.91 |
Beijing | 1209 | 0.13 | 0.004 | 0.13 | 0.18 | 0.07 | 0.89 | 0.88 | 0.86 | 0.89 |
XiangHe | 674 | 0.13 | 0.005 | 0.14 | 0.18 | 0.05 | 0.88 | 0.92 | 0.91 | 0.93 |
Taihu | 102 | 0.13 | 0.009 | 0.09 | 0.16 | 0.04 | 0.87 | 0.81 | 0.73 | 0.86 |
Hong_Kong_Sheung | 25 | 0.17 | 0.024 | 0.12 | 0.17 | 0.06 | 0.71 | 0.68 | 0.38 | 0.84 |
Douliu | 269 | 0.25 | 0.012 | 0.19 | 0.17 | 0.07 | 0.47 | 0.64 | 0.56 | 0.71 |
EPA-NCU | 429 | 0.12 | 0.005 | 0.11 | 0.12 | 0.05 | 0.71 | 0.85 | 0.82 | 0.87 |
Taipei_CWB | 52 | 0.16 | 0.018 | 0.13 | 0.13 | 0.06 | 0.61 | 0.65 | 0.46 | 0.79 |
Lulin | 24 | 0.04 | 0.008 | 0.04 | 0.05 | 0.00 | 1.21 | 0.83 | 0.63 | 0.92 |
Chiayi | 630 | 0.23 | 0.005 | 0.14 | 0.14 | −0.03 | 0.66 | 0.74 | 0.70 | 0.77 |
Chen-Kung_Univ | 1170 | 0.14 | 0.004 | 0.14 | 0.16 | 0.15 | 0.58 | 0.68 | 0.65 | 0.71 |
Irkutsk | 184 | 0.08 | 0.006 | 0.08 | 0.07 | −0.03 | 0.83 | 0.94 | 0.92 | 0.96 |
Ussuriysk | 458 | 0.08 | 0.004 | 0.08 | 0.11 | −0.01 | 1.11 | 0.81 | 0.78 | 0.84 |
Dalanzadgad | 913 | 0.05 | 0.002 | 0.07 | 0.07 | −0.01 | 1.47 | 0.75 | 0.72 | 0.77 |
Hokkaido_University | 232 | 0.15 | 0.008 | 0.12 | 0.14 | 0.06 | 1.17 | 0.93 | 0.92 | 0.95 |
Niigata | 836 | 0.07 | 0.002 | 0.06 | 0.06 | 0.05 | 1.08 | 0.93 | 0.92 | 0.93 |
Noto | 135 | 0.08 | 0.006 | 0.07 | 0.10 | 0.05 | 0.95 | 0.82 | 0.76 | 0.87 |
Chiba_University | 456 | 0.09 | 0.004 | 0.09 | 0.12 | 0.06 | 1.02 | 0.78 | 0.74 | 0.82 |
Osaka | 191 | 0.14 | 0.007 | 0.10 | 0.15 | 0.02 | 1.16 | 0.76 | 0.69 | 0.81 |
Shirahama | 15 | 0.13 | 0.013 | 0.05 | 0.05 | 0.08 | 1.19 | 0.96 | 0.87 | 0.99 |
Fukuoka | 34 | 0.14 | 0.019 | 0.11 | 0.16 | −0.13 | 1.40 | 0.78 | 0.61 | 0.89 |
Gosan_SNU | 222 | 0.09 | 0.004 | 0.07 | 0.09 | 0.06 | 1.02 | 0.88 | 0.85 | 0.91 |
Gwangju_GIST | 65 | 0.17 | 0.011 | 0.09 | 0.16 | 0.15 | 0.66 | 0.72 | 0.58 | 0.82 |
KORUS_Kyungpook_NU | 43 | 0.16 | 0.016 | 0.10 | 0.15 | 0.03 | 0.77 | 0.80 | 0.66 | 0.89 |
KORUS_NIER | 81 | 0.12 | 0.008 | 0.07 | 0.10 | −0.08 | 0.97 | 0.81 | 0.71 | 0.87 |
KORUS_UNIST_Ulsan | 41 | 0.12 | 0.012 | 0.08 | 0.14 | −0.03 | 0.97 | 0.68 | 0.48 | 0.82 |
KORUS_Baeksa | 59 | 0.14 | 0.011 | 0.09 | 0.11 | −0.04 | 0.85 | 0.94 | 0.90 | 0.96 |
Anmyon | 245 | 0.11 | 0.005 | 0.08 | 0.11 | 0.11 | 0.89 | 0.92 | 0.90 | 0.94 |
Gangneung_WNU | 134 | 0.11 | 0.007 | 0.08 | 0.13 | 0.05 | 0.89 | 0.85 | 0.79 | 0.89 |
Hankuk_UFS | 679 | 0.12 | 0.003 | 0.09 | 0.14 | −0.03 | 0.97 | 0.90 | 0.88 | 0.91 |
Seoul_SNU | 463 | 0.12 | 0.004 | 0.09 | 0.15 | 0.01 | 0.99 | 0.87 | 0.85 | 0.89 |
Yonsei_University | 484 | 0.12 | 0.004 | 0.09 | 0.15 | 0.02 | 0.97 | 0.87 | 0.85 | 0.89 |
Baengnyeong | 264 | 0.09 | 0.005 | 0.08 | 0.09 | 0.06 | 1.05 | 0.94 | 0.92 | 0.95 |
Lake_Argyle | 415 | 0.07 | 0.003 | 0.06 | 0.06 | 0.08 | 0.81 | 0.67 | 0.61 | 0.72 |
Lake_Lefroy | 22 | 0.02 | 0.002 | 0.01 | 0.02 | 0.01 | 0.83 | 0.69 | 0.39 | 0.86 |
Jabiru | 529 | 0.06 | 0.003 | 0.07 | 0.08 | 0.05 | 0.94 | 0.58 | 0.52 | 0.63 |
Birdsville | 1684 | 0.11 | 0.002 | 0.09 | 0.09 | 0.13 | 0.33 | 0.19 | 0.14 | 0.23 |
Fowlers_Gap | 2001 | 0.07 | 0.001 | 0.05 | 0.06 | 0.08 | 0.36 | 0.22 | 0.18 | 0.26 |
Canberra | 263 | 0.02 | 0.002 | 0.03 | 0.04 | 0.03 | 0.72 | 0.49 | 0.39 | 0.57 |
Pontianak | 89 | 0.11 | 0.010 | 0.10 | 0.12 | 0.12 | 0.75 | 0.40 | 0.21 | 0.56 |
Palangkaraya | 79 | 0.12 | 0.006 | 0.06 | 0.06 | −0.11 | 0.96 | 0.98 | 0.97 | 0.99 |
Makassar | 311 | 0.12 | 0.008 | 0.14 | 0.15 | 0.08 | 1.15 | 0.53 | 0.45 | 0.61 |
Bandung | 94 | 0.14 | 0.011 | 0.10 | 0.07 | 0.03 | 0.47 | 0.73 | 0.62 | 0.81 |
USM_Penang | 66 | 0.10 | 0.008 | 0.07 | 0.09 | 0.19 | 0.47 | 0.57 | 0.38 | 0.72 |
Songkhla_Met_Sta | 195 | 0.08 | 0.005 | 0.07 | 0.09 | 0.09 | 0.81 | 0.78 | 0.71 | 0.83 |
Bac_Lieu | 68 | 0.08 | 0.009 | 0.08 | 0.10 | 0.01 | 0.78 | 0.81 | 0.70 | 0.88 |
Silpakorn_Univ | 770 | 0.17 | 0.005 | 0.15 | 0.14 | 0.02 | 0.63 | 0.74 | 0.71 | 0.77 |
Ubon_Ratchathani | 26 | 0.34 | 0.030 | 0.15 | 0.12 | -0.09 | 0.61 | 0.80 | 0.60 | 0.91 |
Nong_Khai | 452 | 0.18 | 0.008 | 0.18 | 0.16 | 0.01 | 0.67 | 0.84 | 0.81 | 0.87 |
Omkoi | 637 | 0.07 | 0.003 | 0.07 | 0.07 | 0.02 | 0.74 | 0.90 | 0.88 | 0.91 |
Chiang_Mai_Met_Sta | 324 | 0.20 | 0.008 | 0.15 | 0.15 | -0.01 | 0.66 | 0.74 | 0.69 | 0.79 |
Luang_Namtha | 241 | 0.24 | 0.012 | 0.19 | 0.09 | -0.03 | 0.56 | 0.92 | 0.90 | 0.94 |
Son_La | 51 | 0.24 | 0.017 | 0.12 | 0.10 | -0.08 | 0.70 | 0.92 | 0.86 | 0.95 |
NGHIA_DO | 54 | 0.17 | 0.015 | 0.11 | 0.13 | -0.10 | 0.89 | 0.94 | 0.90 | 0.97 |
Bhola | 585 | 0.22 | 0.007 | 0.16 | 0.19 | -0.08 | 0.82 | 0.81 | 0.79 | 0.84 |
Dhaka_University | 842 | 0.39 | 0.009 | 0.25 | 0.18 | -0.05 | 0.59 | 0.81 | 0.79 | 0.83 |
Pokhara | 846 | 0.20 | 0.006 | 0.17 | 0.14 | -0.05 | 0.69 | 0.88 | 0.86 | 0.89 |
Gandhi_College | 518 | 0.31 | 0.009 | 0.21 | 0.21 | 0.00 | 0.58 | 0.62 | 0.56 | 0.67 |
Total | 23310 | 0.13 | 0.001 | 0.14 | 0.16 | 0.07 | 0.69 | 0.82 | 0.81 | 0.82 |
Areas | N | MAD | SE | SDEV | RMSE | y-Intercept | Slope | R | RL | RU |
---|---|---|---|---|---|---|---|---|---|---|
East Asia | 12148 | 0.12 | 0.001 | 0.12 | 0.16 | 0.06 | 0.84 | 0.86 | 0.85 | 0.86 |
Southeast Asia | 6248 | 0.21 | 0.002 | 0.19 | 0.16 | 0.04 | 0.58 | 0.79 | 0.78 | 0.80 |
Australia | 4914 | 0.08 | 0.001 | 0.07 | 0.08 | 0.09 | 0.57 | 0.35 | 0.33 | 0.38 |
Months | N | MAD | SE | SDEV | RMSE | y-Intercept | Slope | R | RL | RU |
---|---|---|---|---|---|---|---|---|---|---|
Month | ||||||||||
January | 1788 | 0.14 | 0.004 | 0.15 | 0.12 | 0.05 | 0.53 | 0.81 | 0.80 | 0.83 |
February | 2266 | 0.17 | 0.003 | 0.16 | 0.15 | 0.06 | 0.59 | 0.80 | 0.79 | 0.82 |
March | 2596 | 0.19 | 0.003 | 0.17 | 0.18 | 0.08 | 0.59 | 0.75 | 0.74 | 0.77 |
April | 1951 | 0.15 | 0.004 | 0.16 | 0.20 | 0.10 | 0.73 | 0.78 | 0.76 | 0.80 |
May | 3164 | 0.15 | 0.002 | 0.14 | 0.19 | 0.09 | 0.79 | 0.79 | 0.78 | 0.80 |
June | 1729 | 0.09 | 0.002 | 0.09 | 0.12 | 0.05 | 0.90 | 0.94 | 0.94 | 0.95 |
July | 1608 | 0.08 | 0.002 | 0.07 | 0.10 | 0.06 | 0.89 | 0.93 | 0.92 | 0.93 |
August | 1784 | 0.08 | 0.002 | 0.08 | 0.09 | 0.08 | 0.74 | 0.86 | 0.85 | 0.87 |
September | 1196 | 0.11 | 0.004 | 0.13 | 0.15 | 0.07 | 0.77 | 0.88 | 0.86 | 0.89 |
October | 1518 | 0.12 | 0.004 | 0.14 | 0.15 | 0.06 | 0.71 | 0.86 | 0.85 | 0.88 |
November | 1920 | 0.14 | 0.003 | 0.14 | 0.16 | 0.07 | 0.66 | 0.78 | 0.77 | 0.80 |
December | 1839 | 0.13 | 0.004 | 0.16 | 0.14 | 0.06 | 0.61 | 0.85 | 0.84 | 0.86 |
Seasons | ||||||||||
Spring | 7711 | 0.16 | 0.002 | 0.16 | 0.20 | 0.09 | 0.69 | 0.76 | 0.75 | 0.77 |
Summer | 5121 | 0.08 | 0.001 | 0.08 | 0.10 | 0.06 | 0.87 | 0.93 | 0.92 | 0.93 |
Autumn | 4634 | 0.13 | 0.002 | 0.14 | 0.15 | 0.07 | 0.71 | 0.84 | 0.83 | 0.85 |
Winter | 5893 | 0.15 | 0.002 | 0.16 | 0.14 | 0.06 | 0.59 | 0.82 | 0.82 | 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xu, H.; Zhang, L. Assessment of Himawari-8 AHI Aerosol Optical Depth Over Land. Remote Sens. 2019, 11, 1108. https://doi.org/10.3390/rs11091108
Zhang W, Xu H, Zhang L. Assessment of Himawari-8 AHI Aerosol Optical Depth Over Land. Remote Sensing. 2019; 11(9):1108. https://doi.org/10.3390/rs11091108
Chicago/Turabian StyleZhang, Wenhao, Hui Xu, and Lili Zhang. 2019. "Assessment of Himawari-8 AHI Aerosol Optical Depth Over Land" Remote Sensing 11, no. 9: 1108. https://doi.org/10.3390/rs11091108
APA StyleZhang, W., Xu, H., & Zhang, L. (2019). Assessment of Himawari-8 AHI Aerosol Optical Depth Over Land. Remote Sensing, 11(9), 1108. https://doi.org/10.3390/rs11091108