Change Detection of Soil Formation Rate in Space and Time Based on Multi Source Data and Geospatial Analysis Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pretreatment
2.2.1. P, T, and ET
2.2.2. SM
2.2.3. NDVI
2.2.4. Hydrochemical Data
2.2.5. Carbonate Rock Outcrops
2.2.6. Soil Erosion Modulus
2.3. Methods
2.3.1. Maximal Potential Dissolution (MPD) Method
2.3.2. Method of Computing SFR
2.3.3. Multiple Linear Regression (MLR)
2.3.4. Least Squares Trend Analysis
2.3.5. Pearson Correlation Analysis
3. Results
3.1. Spatialization of Activity Coefficients of Calcium Ions and Bicarbonate
3.2. Diversity of Dissolution Rate and Its Evolutionary Rule
3.2.1. Spatial Pattern of Dissolution Rate
3.2.2. Evolutionary Process of Dissolution Rate
3.3. Diversity of SFR and Its Evolutionary Process
3.3.1. Spatial Pattern of SFR
3.3.2. Dynamic Variation of SFR
3.3.3. Statistical Characteristics of SFR under Different Lithologies
3.4. Correlation between Ecohydrological Factors and SFR under Different Lithological Backgrounds
4. Discussion
4.1. Comparison with Similar Studies
4.1.1. Dissolution Rate
4.1.2. Soil Formation Rate
4.2. Application of Soil Formation Rate in the Risk Reassessment of Soil Erosion
4.3. Applicability of the Method
4.4. Analysis of Limitation, Deficiency, and Uncertainty
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andreo, B. Introductory editorial: Advances in karst hydrogeology. Environ. Earth Sci. 2012, 65, 2219–2220. [Google Scholar] [CrossRef] [Green Version]
- Febles-González, J.M.; Vega-Carreño, M.B.; Tolón-Becerra, A.; Lastra-Bravo, X. Assessment of soil erosion in karst regions of Havana, Cuba. Land Degrad. Dev. 2012, 23, 465–474. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, Z.; Yuan, D.; Xia, R.; Zhang, C. The progress in the study of the karst dynamic system and global changes in the past 30 years. Geol. China 2017, 44, 874–900. [Google Scholar]
- Phillips, J.D. Self-limited biogeomorphic ecosystem engineering in epikarst soils. Phys. Geogr. 2018, 39, 304–328. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, D.; Chen, Q.; Tang, Y.; Chen, F. Large heterogeneity of water and nutrient supply derived from runoff of nearby rock outcrops in karst ecosystems in SW China. Catena 2019, 172, 125–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Li, Z.; Liu, M.; Xu, C.; Zhang, R.; Luo, W. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Environ. 2019, 650, 2657–2665. [Google Scholar] [CrossRef]
- Parise, M.; Waele, J.D.; Gutierrez, F. Current perspectives on the environmental impacts and hazards in karst. Environ. Geol. 2009, 58, 235–237. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Wang, S.; Tian, Y. Integrating mitigation measures for karst rocky desertification land in the Southwest mountains of China. Carbonates Evaporites 2019, 34, 1095–1106. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Zhu, J.; Xu, C.; Wang, K. Effects of lithology and geomorphology on sediment yield in karst mountainous catchments. Geomorphology 2019, 343, 119–128. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Wang, X.; Jin, L.; Mei, L. Response of shallow karst fissure soil quality to secondary succession in a degraded karst area of southwestern China. Geoderma 2019, 348, 76–85. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation; Blackwell publishing: New York, NY, USA, 1991; p. 484. [Google Scholar]
- Norman, H. Soil Conservation; Cornell University Press: Ithaca, NY, USA, 1985. [Google Scholar]
- Wei, Q.F.; Cheng, H.Z.; Wu, Z.D.; Huang, Y.; Jiao, J.Y. The geochemical characteristics of limestone soils in longgang area, Guangxi. Acta Pedol. Sin. 1983, 20, 30–42. [Google Scholar]
- Yuan, D. On the karst enviromental system. Carsologica Sin. 1988, 7, 179. [Google Scholar]
- Chai, Z. Soil Erosion in Karst Area of Guangxi Autonomous Region. J. Mt. Res. 1989, 4. [Google Scholar]
- Li, Y.B.; Wang, S.J.; Wei, C.F.; Long, J. The Spatial Distribution of Soil Loss Tolerance in Carbonate Area in Guizhou Province. Earth Environ. 2006, 34, 36–40. [Google Scholar]
- Su, W.C.; Zhou, J.Z. Rocky Desertification in Guizhou Karst Region and its Preventive Strategy. Res. Environ. Yangtza Val. 1995, 4, 177–182. [Google Scholar]
- Hill, A.; Mandallaz, D.; Langshausen, J. A Double-Sampling Extension of the German National Forest Inventory for Design-Based Small Area Estimation on Forest District Levels. Remote Sens. 2018, 10, 1052. [Google Scholar] [CrossRef] [Green Version]
- Griebel, J.; Dierking, W. A Method to Improve High-Resolution Sea Ice Drift Retrievals in the Presence of Deformation Zones. Remote Sens. 2017, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Launeau, P.; Meleder, V.; Verpoorter, C.; Barille, L.; Kazemipour-Ricci, F.; Giraud, M.; Jesus, B.; Le Menn, E. Microphytobenthos Biomass and Diversity Mapping at Different Spatial Scales with a Hyperspectral Optical Model. Remote Sens. 2018, 10, 716. [Google Scholar] [CrossRef] [Green Version]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Zurqani, H.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. Predicting the Classes and Distribution of Salt-Affected Soils in Northwest Libya. Commun. Soil Sci. Plant. Anal. 2018, 49, 689–700. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Post, C.; Zurqani, H.A. A Review of Libyan Soil Databases for Use within an Ecosystem Services Framework. Land 2019, 8, 82. [Google Scholar]
- Zurqani, H.A.; Post, C.; Mikhailova, E.A.; Allen, J.S. Mapping Urbanization Trends in a Forested Landscape Using Google Earth Engine. Remote Sens. Earth Syst. Sci. 2019, 2, 173–182. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J. Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products. Remote Sens. 2014, 6, 7360–7378. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Ma, Y. Evaluating the Drought-Monitoring Utility of Four Satellite-Based Quantitative Precipitation Estimation Products at Global Scale. Remote Sens. 2019, 11, 2010. [Google Scholar] [CrossRef] [Green Version]
- Um, M.-J.; Kim, Y.; Park, D. Evaluation and modification of the Drought Severity Index (DSI) in East Asia. Remote Sens. Environ. 2018, 209, 66–76. [Google Scholar] [CrossRef]
- Liu, Z.; Dreybrodt, W.; Wang, H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci. Rev. 2010, 99, 162–172. [Google Scholar] [CrossRef]
- Luo, W.W.S.; Wang, S.; Liu, X. Research Progresses and Prospect of Chimney Effect about Carbon Cycle in the Karst Cave System. Adv. Earth Sci. 2014, 29, 1333–1340. [Google Scholar]
- Di, X.Y.; An, X.J.; Dong, H.; Tang, H.; Xiao, B. The Distribution and Evolution of Soil Organic Matter in the Karst Region, Guizhou Province, Southwestern China. Earth Environ. 2015, 43, 697–708. [Google Scholar]
- Yue, L.; Xiao, Y.B.; Shi, J.W.; Luo, Y.Q.; Yi, C.T.; Luo, G.J. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China. Solid Earth 2017, 8, 661–669. [Google Scholar]
- De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 2001, 106, 20069–20084. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Bai, X.; Tan, Q.; Li, Q.; Wu, L.; Tian, S.; Hu, Z.; Li, C.; Deng, Y. Factors Affecting Long-Term Trends in Global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Meybeck, M.; Ragu, A. GEMS-GLORI World River Discharge Database; Laboratoire de Géologie Appliquée, Université Pierre et Marie Curie: Paris, France, 2012. [Google Scholar] [CrossRef]
- Liu, B.; Song, C.; Shi, Z. Correction Algorithm of Slope Factor in Universal Soil Loss Equation in Earth-Rocky Mountain Area of Southwest China. Soil Water Conserv. China 2015, 45–47. [Google Scholar]
- Zeng, S.; Jiang, Y.; Liu, Z. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS. Glob. Planet. Chang. 2016, 144, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, S.; Bai, X.; Luo, W.; Tang, H.; Cao, Y.; Wu, L.; Chen, F.; Li, Q.; Zeng, C.; et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink. Sci. Total Environ. 2018, 643, 157–170. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO 2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Gombert, P. Role of karstic dissolution in global carbon cycle. Glob. Planet. Chang. 2002, 33, 177–184. [Google Scholar] [CrossRef]
- Plummer, L.N.; Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Et Cosmochim. Acta 1982, 46, 1011–1040. [Google Scholar] [CrossRef]
- Brook, G.A.; Folkoff, M.E.; Box, E.O. A World Model of Soil Carbon-Dioxide. Earth Surf. Process. Landf. 1983, 8, 79–88. [Google Scholar] [CrossRef]
- Cao, J.; Yang, H.; Kang, Z. Preliminary regional estimation of carbon sink flux by carbonate rock corrosion: A case study of the Pearl River Basin. Chin. Sci. Bull. 2011, 56, 3766–3773. [Google Scholar] [CrossRef] [Green Version]
- Brinkhoff, J.; Dunn, B.W.; Robson, A.J.; Dunn, T.S.; Dehaan, R.L. Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data. Remote Sens. 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- El-Nadry, M.; Li, W.; El-Askary, H.; Awad, M.A.; Mostafa, A.R. Urban Health Related Air Quality Indicators over the Middle East and North Africa Countries Using Multiple Satellites and AERONET Data. Remote Sens. 2019, 11, 2096. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, C.; Barnes, B.B.; Wanninkhof, R.; Cai, W.J.; Barbero, L.; Pierrot, D. A machine learning approach to estimate surface ocean pCO(2) from satellite measurements. Remote Sens. Environ. 2019, 228, 203–226. [Google Scholar] [CrossRef]
- Song, Y.; Ma, M.G. Study on Vegetation Cover Change in Northwest China Based on SPOT VEGETATION Data. J. Desert Res. 2007, 27, 89–93. [Google Scholar]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Wu, X.; Dan, M. In Analysis of temporal and spatial characteristics about surface actual Evapotranspiration in Haihe river basin based on MODIS. In Proceedings of the International Workshop on Earth Observation & Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016. [Google Scholar]
- Zhang, Y.C.; Zhao, Z.Q.; Li, S.G.; Meng, X.F. Indicating variation of surface vegetation cover using SPOT NDVI in the northern part of North China. Geogr. Res. 2008, 27, 745–755. [Google Scholar]
- Cheng, F.Y.; Liu, S.L.; Yin, Y.J.; Liu, Y.J.; An, N.N.; Liu, X.M. The dynamics and main driving factors of coastal vegetation in Guangxi based on MODIS NDVI. Acta Ecol. Sin. 2017, 37. [Google Scholar]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Hou, G.L.; Liu, D.Y.; Zhang, Z.X.; Guo, D.; Zhang, H.Y. Response of NDVI in Different Climatic Zone to Climate Change in Songnen Plain. Chin. J. Agrometeorol. 2012, 2, 20. [Google Scholar]
- Zhang, J.H.; Feng, Z.M.; Jiang, L.G.; Yang, Y.Z. Analysis of the Correlation between NDVI and Climate Factors in the Lancang River Basin. J. Nat. Res. 2015, 30, 1425–1435. [Google Scholar]
- Wang, L.C.; Meng, H.H.; Su, W.C.; Xu, Z.L. Estimate of erosion rates in a karst region using calcium concentrations: A case study of Puding, Guizhou, southern China. J. Nanjing Univ. 2010, 46, 664–670. [Google Scholar]
- Han, G.L.; Liu, C.Q. Hydrogeochemistry of Rivers in Guizhou Province, China: Constraints on Crustal Weathering in Karst Terrain. Adv. Earth Sci. 2005, 20, 394–406. [Google Scholar]
- Zeng, C.; Zhao, M.; Yang, R.; Liu, Z.H. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system. Hydrogeol. Eng. Geol. 2014, 41, 106–111. [Google Scholar]
- Cao, J.H.; Jiang, Z.C.; Yang, D.S.; Pei, J.G.; Yang, H.; Luo, W.Q. Soil Loss Tolerance and Prevention and Measurement of Karst Area in Southwest China. Soil Water Conserv. China 2008, 12, 40–45. [Google Scholar]
- Chen, M.; Zhang, Z.; Wang, X.; Zhang, K.; Chen, Y. A comparison of slope erosion sediment yield characteristics of yellow soil in Southwest China and loess in Northwest China. Sci. Soil Water Conserv. 2016, 14, 53–60. [Google Scholar]
- Peng, T.; Yang, T.; Wang, S.J.; Zhang, X.B.; Chen, B.; Wang, J.Y. Monitoring Results of Soil Loss in Karst Slopes. Earth Environ. 2009, 37, 126–130. [Google Scholar]
- Yuan, D. On the Environmental and Geologic Problems of Karst Mountains and Rocks in the South- West China. World Sci-Tech R D 1997, 5, 93–97. [Google Scholar]
Parameters | Time Span | Temporal Resolution | Spatial Resolution | Sources |
---|---|---|---|---|
Precipitation (P) | 1983.1–2015.12 | Monthly | 0.25° × 0.25° | Global Land Data Assimilation System |
Temperature (T) | 1983.1–2015.12 | Monthly | 0.25° × 0.25° | Global Land Data Assimilation System |
Evaporation (ET) | 1983.1–2015.12 | Monthly | 0.25° × 0.25° | Global Land Data Assimilation System |
soil moisture (SM) | 1983.1–2015.12 | Monthly | 0.125° × 0.125° | European Centre for Medium-Range Weather Forecasts |
NDVI | 1983.1–2015.12 | 15 days | 0.083° × 0.083° | Global Inventory Modeling and Mapping Studies |
Ca2+, Mg2+, Na+, K+, CO32−, HCO3−, SO42− and Cl− concentration | multi-year average | / | GEMS-GLORI world river discharge database | |
Region boundaries | Present | / | / | State Bureau of China’s Survey and Measurement. |
Carbonate rock outcrops | Present | / | / | the Ministry of China Geological Survey |
Soil erosion modulus | 1980s, 1990s, 2000, 2005, 2010, 2015 | Year | 1 km × 1 km | Institute of Mountain Hazards and Environment, Chinese Academy of Science. |
A | B | C | D | F | |
---|---|---|---|---|---|
Ks | −171.9065 | −0.07793 | 2839.3191 | 71.595log | |
K1 | −356.3094 | −0.06091964 | 21834.37 | 126.8339 | −1684915 |
K0 | −14.0184 | 2385.73 | 0.015264 | ||
K2 | −107.8871 | −0.03252849 | 5151.79 | 38.92561 | −563713.9 |
Lithology | HL | HD | HDL | CI | CA |
---|---|---|---|---|---|
DC | 0.965 | 0.505 | 0.8015 | 0.767 | 0.767 |
Lithology | C | Q | |
---|---|---|---|
HC | HL | ||
HD | >90% | <10% | |
HDL | |||
CI | 70~90% | 10~30% | |
CA | 30~70% | 30~70% |
0.8296 | 5.8 × 10−7 | 0.0003 | 1.2713 × 10−6 | −3.7831 × 10−5 | 0.0068 | 0.0002 | |
0.9413 | 2.15 × 10−7 | −1.20 × 10−4 | 4.72 × 10−7 | −1.40 × 10−5 | −0.0025 | −0.0001 |
Lithology | Mean | Min | Max | Std dev. | |
---|---|---|---|---|---|
HC | 12.01 | 10 | 20.71 | 1.45 | |
HL | 12.25 | 10 | 20.71 | 1.49 | |
HD | 10.85 | 10 | 12.92 | 0.78 | |
HDL | 12.17 | 10.01 | 18.90 | 1.12 | |
CI | 47.98 | 41.04 | 61.40 | 2.81 | |
CA | 111.13 | 100 | 134.93 | 6.29 |
Source | Study Area | Lithology | Dissolution Rate (mm/ka) | This Study | Ratio, This to Other |
---|---|---|---|---|---|
Wang LC (2010) [60] | Muzhu cave watershed | HL | 41.5 | 38.6 | 2.9 |
Cao JH (2011) [48] | Pearl River watershed | HL, HD, HDL, CI, CA | 21.4~115.1 | 16~101.32 | 5.4~13.78 |
Zeng C (2017) [62] | Banzhai watershed in Province | HL | 24.91 | 27.22 | −2.31 |
Han GL (2005) [61] | Wujiang | HL | 33 | 30.95 | 2.05 |
This study (2019) | Carbonate area of China | HL, HD, HDL, CI, CA | 0~106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, S.; Bai, X.; Luo, G.; Song, X.; Tian, Y.; Hu, Z.; Yang, Y.; Tian, S. Change Detection of Soil Formation Rate in Space and Time Based on Multi Source Data and Geospatial Analysis Techniques. Remote Sens. 2020, 12, 121. https://doi.org/10.3390/rs12010121
Li Q, Wang S, Bai X, Luo G, Song X, Tian Y, Hu Z, Yang Y, Tian S. Change Detection of Soil Formation Rate in Space and Time Based on Multi Source Data and Geospatial Analysis Techniques. Remote Sensing. 2020; 12(1):121. https://doi.org/10.3390/rs12010121
Chicago/Turabian StyleLi, Qin, Shijie Wang, Xiaoyong Bai, Guangjie Luo, Xiaoqing Song, Yichao Tian, Zeyin Hu, Yujie Yang, and Shiqi Tian. 2020. "Change Detection of Soil Formation Rate in Space and Time Based on Multi Source Data and Geospatial Analysis Techniques" Remote Sensing 12, no. 1: 121. https://doi.org/10.3390/rs12010121
APA StyleLi, Q., Wang, S., Bai, X., Luo, G., Song, X., Tian, Y., Hu, Z., Yang, Y., & Tian, S. (2020). Change Detection of Soil Formation Rate in Space and Time Based on Multi Source Data and Geospatial Analysis Techniques. Remote Sensing, 12(1), 121. https://doi.org/10.3390/rs12010121