Climatology of Passive Microwave Brightness Temperatures in Tropical Cyclones and their Relations to Storm Intensities as Seen by FY-3B/MWRI
Abstract
:1. Introduction
2. Data and Methodology
2.1. The Best-Track Data
2.2. FY-3B/MWRI Level-1 TB Data
2.3. Generation of the FY-3B/MWRI-Based Tropical Cyclones Brightness Temperature (TCsBT) Database
2.4. Selection of MWRI Overpasses
3. Results
3.1. Relations between PMW TB and TC Intensities
3.2. TC Intensity Estimation Based on the FY-3B/MWRI TCsBT Database
3.2.1. Selection of Variables and Regression Model
3.2.2. Regression Analysis
3.2.3. Variable Weightiness Contributions
3.2.4. Comparison with other TC Intensity Estimation Techniques
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dvorak, V.F. Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery. Mon. Weather Rev. 1975, 103, 420–430. [Google Scholar] [CrossRef]
- Velden, C.S.; Olander, T.L.; Zehr, R.M. Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery. Weather Forecast. 1998, 13, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Olander, T.L.; Velden, C.S. The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. Weather Forecast. 2007, 22, 287–298. [Google Scholar] [CrossRef]
- Olander, T.L.; Velden, C.S. The UW-CIMMS Advanced Dvorak Technique (ADT): Current status and future upgrades. In Proceedings of the 33rd Conference on Hurricanes and Tropical Meteorology, Ponte Verdi, FL, USA, 18–20 April 2018; p. 247. [Google Scholar]
- Yoshida, S.; Sakai, M.; Shouji, A.; Hirohata, M.; Shimizu, A. Estimation of Tropical Cyclone Intensity Using Aqua/AMSR-E Data. RSMC Tokyo Typhoon Cent. Tech. Rev. 2011, 13, 1–36. [Google Scholar]
- Hawkins, J.D.; Lee, T.F.; Richardson, K.; Sampson, C.; Turk, F.J.; Kent, J.E. Satellite multi-sensor tropical cyclone structure monitoring. Bull. Am. Meteorol. Soc. 2001, 82, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.F.; Turk, F.J.; Hawkins, J.; Richardson, K. Interpretation of TRMM TMI Images of Tropical Cyclones. Earth Interact. 2002, 6, 1–17. [Google Scholar] [CrossRef]
- Hoshino, S.; Nakazawa, T. Estimation of Tropical Cyclone’s Intensity Using TRMM/TMI Brightness Temperature Data. J. Meteorol. Soc. Jpn. 2007, 85, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Weng, F. Applications of AMSR-E measurements for tropical cyclone predictions Part I: Retrieval of Sea Surface Temperature and Wind speed. Adv. Atmos. Sci. 2008, 25, 227–245. [Google Scholar] [CrossRef]
- Jiang, H.; Zagrodnik, J.P.; Tao, C.; Zipser, E.J. Classifying Precipitation Types in Tropical Cyclones Using the NRL 37 GHz Color Product. J. Geophys. Res. Atmos. 2018, 123, 5509–5524. [Google Scholar] [CrossRef]
- Weng, F.; Grody, N.C. Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res. Space Phys. 1994, 99, 25535–25551. [Google Scholar] [CrossRef]
- Jiang, H.; Tao, C.; Pei, Y. Estimation of Tropical Cyclone Intensity in the North Atlantic and North Eastern Pacific Basins Using TRMM Satellite Passive Microwave Observations. J. Appl. Meteorol. Climatol. 2019, 58, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Cecil, D.J.; Zipser, E.J. Relationships between Tropical Cyclone Intensity and Satellite-Based Indicators of Inner Core Convection: 85-GHz Ice-Scattering Signature and Lightning. Mon. Weather Rev. 1999, 127, 103–123. [Google Scholar] [CrossRef]
- Spencer, R.W.; Goodman, H.M.; Hood, R.E. Precipitation Retrieval over Land and Ocean with the SSM/I: Identification and Characteristics of the Scattering Signal. J. Atmos. Ocean. Technol. 1989, 6, 254–273. [Google Scholar] [CrossRef] [Green Version]
- Grody, N.C. Remote sensing of the atmosphere from satellites using microwave radiometry. In Atmospheric Remote Sensing by Microwave Radiometry; John Wiley: New York, NY, USA, 1993; pp. 259–304. [Google Scholar]
- Glass, M.; Felde, G.W. Intensity estimation of tropical cyclones using SSM/I brightness temperatures. In Proceedings of the Preprints, Sixth Conference on Satellite Meteorology and Oceanography, Atlanta, GA, USA, 5–10 January 1992; pp. J8–J10. [Google Scholar]
- Rao, G.V.; MacArthur, P.D. The SSM/I Estimated Rainfall Amounts of Tropical Cyclones and Their Potential in Predicting the Cyclone Intensity Changes. Mon. Weather Rev. 1994, 122, 1568–1574. [Google Scholar] [CrossRef]
- Bankert, R.L.; Tag, P.M. An Automated Method to Estimate Tropical Cyclone Intensity Using SSM/I Imagery. J. Appl. Meteorol. 2002, 41, 461–472. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Fujii, T. Statistical Analysis of the Characteristics of Severe Typhoons Hitting the Japanese Main Islands. Mon. Weather Rev. 1998, 126, 1091–1097. [Google Scholar] [CrossRef]
- Franke, G.R. Multicollinearity. In Wiley International Encyclopedia of Marketing; Sheth, J., Malhotra, N., Eds.; JohnWiley & Sons Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Knaff, J.A.; Brown, D.P.; Courtney, J.; Gallina, G.M.; Beven, J.L. An Evaluation of Dvorak Technique–Based Tropical Cyclone Intensity Estimates. Weather Forecast. 2010, 25, 1362–1379. [Google Scholar] [CrossRef]
Full name | Fengyun-3B Micro-Wave Radiation Imager | ||||
(FY-3B/MWRI) | |||||
Scanning technique | Conical: 53.1° zenith angle, swath width: 1400 km, | ||||
sampling points/scan = 240 | |||||
Center channel frequency (GHz) | 10.65 | 18.7 | 23.8 | 36.5 | 89 |
Polarization | V, H | V, H | V, H | V, H | V, H |
Ground resolution | 51 × 85 | 30 × 50 | 27 × 45 | 18 × 30 | 9 × 15 |
(km × km) |
Variables | Description | |
---|---|---|
1 | 10.65v | 10.65GHz vertical polarization TB |
2 | 10.65h | 10.65GHz horizontal polarization TB |
3 | 18.70v | 18.70GHz vertical polarization TB |
4 | 18.70h | 18.70GHz horizontal polarization TB |
5 | 23.80v | 23.80GHz vertical polarization TB |
6 | 23.80h | 23.80GHz horizontal polarization TB |
7 | 36.50v | 36.50GHz vertical polarization TB |
8 | 36.50h | 36.50GHz horizontal polarization TB |
9 | 89.00v | 89.00GHz vertical polarization TB |
10 | 89.00h | 89.00GHz horizontal polarization TB |
11 | PCT36.50 | 36.50GHz polarization corrected TB |
12 | PCT89.00 | 89.00GHz polarization corrected TB |
R | 10.65v | 10.65h | 18.70v | 18.70h | 23.80v | 23.80h | 36.50v | 36.50h | 89.00v | 89.00h | PCT36.50 | PCT89.00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10.65v | 1.00 | 0.98 | 0.95 | 0.94 | 0.80 | 0.85 | 0.81 | 0.82 | −0.60 | −0.54 | −0.11 | −0.64 |
10.65h | 0.98 | 1.00 | 0.95 | 0.96 | 0.75 | 0.85 | 0.80 | 0.85 | −0.65 | −0.59 | −0.25 | −0.70 |
18.70v | 0.95 | 0.95 | 1.00 | 0.99 | 0.90 | 0.95 | 0.92 | 0.93 | −0.58 | −0.50 | −0.08 | −0.63 |
18.70h | 0.94 | 0.96 | 0.99 | 1.00 | 0.84 | 0.94 | 0.90 | 0.95 | −0.63 | −0.55 | −0.23 | −0.69 |
23.80v | 0.80 | 0.75 | 0.90 | 0.84 | 1.00 | 0.96 | 0.94 | 0.86 | −0.23 | −0.15 | 0.29 | −0.29 |
23.80h | 0.85 | 0.85 | 0.95 | 0.94 | 0.96 | 1.00 | 0.96 | 0.95 | −0.40 | −0.30 | 0.02 | −0.47 |
36.50v | 0.81 | 0.80 | 0.92 | 0.90 | 0.94 | 0.96 | 1.00 | 0.97 | −0.32 | −0.22 | 0.09 | −0.40 |
36.50h | 0.82 | 0.85 | 0.93 | 0.95 | 0.86 | 0.95 | 0.97 | 1.00 | −0.48 | −0.37 | −0.14 | −0.56 |
89.00v | −0.60 | −0.65 | −0.58 | −0.63 | −0.23 | −0.40 | −0.32 | −0.48 | 1.00 | 0.99 | 0.71 | 0.99 |
89.00h | −0.54 | −0.59 | −0.50 | −0.55 | −0.15 | −0.30 | −0.22 | −0.37 | 0.99 | 1.00 | 0.68 | 0.96 |
PCT36.50 | −0.11 | −0.25 | −0.08 | −0.23 | 0.29 | 0.02 | 0.09 | −0.14 | 0.71 | 0.68 | 1.00 | 0.72 |
PCT89.00 | −0.64 | −0.70 | −0.63 | −0.69 | −0.29 | −0.47 | −0.40 | −0.56 | 0.99 | 0.96 | 0.72 | 1.00 |
TC Intensity Categories | Dependent (2011–2015) | Independent (2016) | All TC Overpasses (2011–2016) | ||
---|---|---|---|---|---|
Tropical depression (TD < 34 kt) | 2049 | 82% | 446 | 18% | 2495 |
Tropical storm (34 < TS < 63 kt) | 1884 | 80% | 458 | 20% | 2342 |
Category 1–2 hurricanes (64 < CAT12 ≤ 95 kt) | 724 | 80% | 186 | 20% | 910 |
Category 3–5 hurricanes (CAT35 > 96 kt) | 406 | 77% | 120 | 23% | 526 |
All TC overpasses | 5063 | 81% | 1210 | 19% | 6273 |
Results | Vmax | ||||
---|---|---|---|---|---|
0-h | 6-h | 12-h | 18-h | 24-h | |
R | 0.602 | 0.631 | 0.634 | 0.619 | 0.594 |
MAE (kt) | 15.791 | 15.034 | 14.961 | 15.624 | 16.759 |
RMSE (kt) | 21.621 | 20.996 | 21.026 | 21.799 | 22.936 |
STD (kt) | 21.593 | 20.972 | 20.979 | 21.726 | 22.819 |
Normalized correlation coefficients | Normalized multiple correlation coefficients | ||||
0 h | 6 h | 12 h | 18 h | 24 h | |
R | 0.653 | 0.679 | 0.691 | 0.687 | 0.671 |
Normalized regression variables coefficients | Normalized multiple regression coefficients | ||||
a | 0.373 | 0.211 | 0.069 | −0.057 | −0.159 |
b | 0.458 | 0.535 | 0.590 | 0.622 | 0.635 |
c | 0.250 | 0.091 | −0.041 | −0.157 | −0.246 |
d | −0.481 | −0.457 | −0.429 | −0.392 | −0.352 |
Methods | Sensors | Verification against | MAE | RMSE | Reference |
---|---|---|---|---|---|
Dvorak technique | VIS, IR | Within 2-h aircraft reconnaissance-based best track | 5–11 kt | 6–14 kt | Knaff et al. (2010) [22] |
Feature-based k-nearest-neighbor | SSM/I | Best track | 14–16 kt | 18.1–19.8 kt | Bankert and Tag (2002) [18] |
PMW multiple channels TB-based multivariate regression | MWRI | Best track | 14–16 kt | 20–23kt | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, B.; Jiang, H.; Weng, F.; Wu, Y. Climatology of Passive Microwave Brightness Temperatures in Tropical Cyclones and their Relations to Storm Intensities as Seen by FY-3B/MWRI. Remote Sens. 2020, 12, 147. https://doi.org/10.3390/rs12010147
Qian B, Jiang H, Weng F, Wu Y. Climatology of Passive Microwave Brightness Temperatures in Tropical Cyclones and their Relations to Storm Intensities as Seen by FY-3B/MWRI. Remote Sensing. 2020; 12(1):147. https://doi.org/10.3390/rs12010147
Chicago/Turabian StyleQian, Bo, Haiyan Jiang, Fuzhong Weng, and Ying Wu. 2020. "Climatology of Passive Microwave Brightness Temperatures in Tropical Cyclones and their Relations to Storm Intensities as Seen by FY-3B/MWRI" Remote Sensing 12, no. 1: 147. https://doi.org/10.3390/rs12010147
APA StyleQian, B., Jiang, H., Weng, F., & Wu, Y. (2020). Climatology of Passive Microwave Brightness Temperatures in Tropical Cyclones and their Relations to Storm Intensities as Seen by FY-3B/MWRI. Remote Sensing, 12(1), 147. https://doi.org/10.3390/rs12010147