Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Peatland Maps
2.2. Satellite Data and Sources
2.3. Land-Use and Land-Cover Maps
2.4. Fire Occurrences, Annual Burned Area, Fire Frequency, and Related Land-Use and Land-Cover Change
3. Results
3.1. Fire Occurrences, Total Area Burned, and Area Affected by Burning among Regions
3.2. Fire-Related Land-Use and Land-Cover Change in Peatlands
3.3. Fire Frequency Analysis in Peatland and Their Associated Land-Use and Land-Cover Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Land Cover Types | Sumatra | Kalimantan | ||||
---|---|---|---|---|---|---|
1990 | 2007 | 2015 | 1990 | 2007 | 2015 | |
Forest | ||||||
Pristine peat swamp forest (PSF) | 3844.2 | 285.0 | 436.0 | 2861.9 | 99.2 | 426.0 |
Degraded PSF | 1468.3 | 2045.3 | 956.5 | 1823.7 | 2760.9 | 2010.0 |
Non-forest (native-vegetated) | ||||||
Tall shrub/secondary forest | 343.1 | 480.4 | 468.5 | 259.6 | 712.5 | 1032.6 |
Ferns/low shrub | 474.1 | 742.2 | 330.3 | 236.5 | 915.2 | 443.9 |
Smallholder area | 904.3 | 1880.1 | 2392.5 | 302.3 | 601.7 | 680.9 |
Industrial plantations | 25.5 | 1506.7 | 2405.5 | 0.1 | 155.5 | 809.6 |
Other land cover | ||||||
Cleared/burned area | 103.9 | 185.0 | 137.9 | 101.4 | 295.6 | 128.4 |
Seasonal water | 31.6 | 44.2 | 38.5 | 169.8 | 212.6 | 220.5 |
Built-up area | 0.5 | 4.9 | 7.7 | 1.2 | 2.6 | 3.8 |
Mangrove | 29.4 | 28.3 | 29.0 | 22.5 | 21.5 | 20.8 |
Water | 5.3 | 28.2 | 27.9 | 2.2 | 4.0 | 4.8 |
Land-Cover Types | Sumatra | Kalimantan | ||||
---|---|---|---|---|---|---|
1990 | 2007 | 2015 | 1990 | 2007 | 2015 | |
Forest | ||||||
Pristine peat swamp forest (PSF) | 1197.0 | 5.8 | 2.7 | 1053.4 | 0.8 | 7.2 |
Degraded PSF | 744.6 | 370.9 | 37.7 | 1248.7 | 247.7 | 116.4 |
Non-forest (native-vegetated) | ||||||
Tall shrub/secondary forest | 190.1 | 281.9 | 403.5 | 311.7 | 489.5 | 1101.8 |
Ferns/low shrub | 415.4 | 938.7 | 377.8 | 401.1 | 1401.7 | 691.4 |
Smallholder area | 138.9 | 542.4 | 883.6 | 372.2 | 752.2 | 824.7 |
Industrial plantations | 0.0 | 404.3 | 889.8 | 0.0 | 81.9 | 656.7 |
Other land cover | ||||||
Cleared/burned area | 40.4 | 176.9 | 127.8 | 112.5 | 546.8 | 115.1 |
Seasonal water | 25.0 | 28.5 | 26.0 | 109.5 | 88.2 | 93.9 |
Built-up area | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.6 |
Mangrove | 2.5 | 2.5 | 2.6 | 1.0 | 1.0 | 1.0 |
Water | 0.2 | 2.4 | 2.5 | 0.3 | 0.6 | 1.6 |
Land Cover (LC) Types | Burning from 2001 to 2007 Dating to the 1990 LC Map | Burning from 2008 to 2018 Dating to the 2007 LC Map | ||||||
---|---|---|---|---|---|---|---|---|
Sumatra | Kalimantan | Sumatra | Kalimantan | |||||
Area | Burning Rate | Area | Burning Rate | Area | Burning Rate | Area | Burning Rate | |
Forest | ||||||||
Pristine peat swamp forest (PSF) | 483.0 | 74.3 | 494.6 | 76.1 | 4.9 | 0.5 | 0.6 | 0.1 |
Degraded PSF | 353.4 | 54.4 | 537.5 | 82.7 | 331.3 | 30.8 | 184.2 | 17.1 |
Non-forest (native-vegetated) | ||||||||
Tall shrub/secondary forest | 84.4 | 13.0 | 160.6 | 24.7 | 182.4 | 17.0 | 253.6 | 23.6 |
Ferns/low shrub | 192.2 | 29.6 | 213.9 | 32.9 | 488.0 | 45.4 | 708.7 | 65.9 |
Smallholder area | 70.1 | 10.8 | 188.6 | 29.0 | 270.8 | 25.2 | 385.8 | 35.9 |
Industrial plantations | 0.0 | 0.0 | 0.0 | 0.0 | 152.0 | 14.1 | 22.2 | 2.1 |
Other land cover | ||||||||
Cleared/burned area | 22.9 | 3.5 | 64.2 | 9.9 | 88.2 | 8.2 | 295.6 | 27.5 |
Seasonal water | 9.6 | 0.0 | 52.0 | 8.0 | 17.0 | 1.6 | 47.0 | 4.4 |
Built-up area | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mangrove | 0.8 | 0.1 | 0.5 | 0.1 | 1.7 | 0.2 | 0.5 | 0.0 |
Water | 0.1 | 0.0 | 0.1 | 2.2 | 1.1 | 0.1 | 0.0 | 0.1 |
Appendix B
References
- Page, S.; Rieley, J.; Hoscilo, A.; Spessa, A.; Weber, U. Current fire regimes, impacts and the likely changes–IV: tropical Southeast Asia. In Vegetation Fires and Global Change – Challenges for Concerted International Action A White Paper directed to the United Nations and International Organizations; Goldberg, J.G., Ed.; Kessel Publishing House: Remagen-Oberwinter, Germany, 2013. [Google Scholar]
- Field, R.D.; van der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. USA 2016, 113, 9204–9209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GFED. 2015 Fire Season. Available online: http://www.globalfiredata.org/updates.html#2015_indonesia (accessed on 15 October 2019).
- World Bank. The Cost of Fire: An Economic Analysis of Indonesia’s 2015 Fire Crisis; The World Bank: Jakarta, Indonesia, 2016; Available online: http://pubdocs.worldbank.org/en/643781465442350600/Indonesia-forest-fire-notes.pdf (accessed on 10 October 2019).
- Dariah, A.; Agus, F. Distribution, properties, and carbon stock of Indonesian peatland. In Proceedings of the International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries, Bogor, Indonesia, 28–29 September 2010; pp. 187–204. [Google Scholar]
- Wahyunto, S.R.; Subagjo, H. Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Kalimantan/Map of Peatland Distribution Area and Carbon Content in Kalimantan, 2000–2002; Wetlands International—Indonesia Programme & Wildlife Habitat Canada (WHC): Bogor, Indonesia, 2004. [Google Scholar]
- Wahyunto, S.R.; Subagjo, H. Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau Sumatera/Maps of Area of Peatland Distribution and Carbon Content in Sumatera, 1990–2002; Wetlands International—Indonesia Programme & Wildlife Habitat Canada (WHC): Bogor, Indonesia, 2003. [Google Scholar]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Chokkalingam, U.; Permana, R.P.; Kurniawan, I.; Mannes, J.; Darmawan, A.; Khususyiah, N.; Susanto, R.H. Community fire use, resource change, and livelihood impacts: The downward spiral in the wetlands of southern Sumatra. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 75–100. [Google Scholar] [CrossRef]
- Dennis, R.A.; Mayer, J.; Applegate, G.; Chokkalingam, U.; Colfer, C.J.P.; Kurniawan, I.; Lachowski, H.; Maus, P.; Permana, R.P.; Ruchiat, Y. Fire, people and pixels: Linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia. Hum. Ecol. 2005, 33, 465–504. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Adiningsih, E.S. Climate anomalies, Indonesian vegetation fires and terrestrial carbon emissions. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 101–112. [Google Scholar] [CrossRef]
- Miettinen, J.; Hyer, E.; Chia, A.S.; Kwoh, L.K.; Liew, S.C. Detection of vegetation fires and burnt areas by remote sensing in insular Southeast Asian conditions: Current status of knowledge and future challenges. Int. J. Remote Sens. 2013, 34, 4344–4366. [Google Scholar] [CrossRef]
- Langner, A.; Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Chang. Biol. 2009, 15, 48–62. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.; Liew, S.C. Influence of peatland and land cover distribution on fire regimes in insular Southeast Asia. Reg. Environ. Chang. 2011, 11, 191–201. [Google Scholar] [CrossRef]
- Numata, I.; Cochrane, M.A.; Galvão, L.S. Analyzing the impacts of frequency and severity of forest fire on the recovery of disturbed forest using Landsat time series and EO-1 Hyperion in the Southern Brazilian Amazon. Earth Interact. 2011, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.I.; Fearnside, P.M. Fire frequency and area burned in the Roraima savannas of Brazilian Amazonia. For. Ecol. Manag. 2005, 204, 371–384. [Google Scholar] [CrossRef]
- Graham, L.L.; Giesen, W.; Page, S.E. A common-sense approach to tropical peat swamp forest restoration in Southeast Asia. Restor. Ecol. 2017, 25, 312–321. [Google Scholar] [CrossRef]
- Tacconi, L.; Moore, P.F.; Kaimowitz, D. Fires in tropical forests—What is really the problem? Lessons from Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 55–66. [Google Scholar] [CrossRef]
- Knorr, W.; Kaminski, T.; Arneth, A.; Weber, U. Impact of human population density on fire frequency at the global scale. Biogeosciences 2014, 11, 1085–1102. [Google Scholar] [CrossRef] [Green Version]
- Konecny, K.; Ballhorn, U.; Navratil, P.; Jubanski, J.; Page, S.E.; Tansey, K.; Hooijer, A.; Vernimmen, R.; Siegert, F. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 2016, 22, 1469–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaveau, D.L.; Sheil, D.; Salim, M.A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6, 32017. [Google Scholar] [CrossRef]
- Hoscilo, A.; Page, S.E.; Tansey, K.J.; Rieley, J.O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 2011, 20, 578–588. [Google Scholar] [CrossRef]
- Cochrane, M.A. Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol. 2001, 15, 1515–1521. [Google Scholar] [CrossRef]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A. Increased damage from fires in logged forests during droughts caused by El Nino. Nature 2001, 414, 437–440. [Google Scholar] [CrossRef]
- Hościło, A. Fire Regime, Vegetation Dynamics and Land Cover Change in Tropical Peatland, Indonesia. Ph.D. Thesis, University of Leicester, Leicester, UK, 2009. [Google Scholar]
- Wagner, C.V. Age-class distribution and the forest fire cycle. Can. J. For. Res. 1978, 8, 220–227. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Ryan, K.C. Fire and fire ecology: Concepts and principles. In Tropical Fire Ecology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25–62. [Google Scholar]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Boschetti, L. Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Tsela, P.; Wessels, K.; Botai, J.; Archibald, S.; Swanepoel, D.; Steenkamp, K.; Frost, P. Validation of the two standard MODIS satellite burned-area products and an empirically-derived merged product in South Africa. Remote Sens. 2014, 6, 1275–1293. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K. Introduction and Fire Regimes. In Wildland Fire in Ecosystems: Effects of Fire on Flora; Gen. Tech. Rep. RMRS-GTR-42; Brown, J.K., Smith, J.K., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; Volume 2, pp. 1–6. [Google Scholar]
- Júnior, A.C.P.; Oliveira, S.L.; Pereira, J.M.; Turkman, M.A.A. Modelling fire frequency in a Cerrado savanna protected area. PLoS ONE 2014, 9, e102380. [Google Scholar]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Oliveira, S.L.; Pereira, J.M.; Carreiras, J.M. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildland Fire 2012, 21, 48–60. [Google Scholar] [CrossRef]
- Oliveira, S.L.; Turkman, M.A.; Pereira, J.M. An analysis of fire frequency in tropical savannas of northern Australia, using a satellite-based fire atlas. Int. J. Wildland Fire 2013, 22, 479–492. [Google Scholar] [CrossRef]
- Rogeau, M.P.; Armstrong, G.W. Quantifying the effect of elevation and aspect on fire return intervals in the Canadian Rocky Mountains. For. Ecol. Manag. 2017, 384, 248–261. [Google Scholar] [CrossRef]
- Johnson, E.A.; Gutsell, S.L. Fire frequency models, methods and interpretations. Adv. Ecol. Res. 1994, 25, 239–287. [Google Scholar]
- Ritung, S.; Wahyunto, N.K.; Sukarman, H.; Suparto, T.C. Peta Lahan Gambut Indonesia Skala 1:250,000; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian: Bogor, Indonesia, 2011. [Google Scholar]
- Miettinen, J.; Hooijer, A.; Vernimmen, R.; Liew, S.C.; Page, S.E. From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 2017, 12, 024014. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.; Liew, S.C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Murdiyarso, D.; Lebel, L.; Gintings, A.; Tampubolon, S.; Heil, A.; Wasson, M. Policy responses to complex environmental problems: Insights from a science—policy activity on transboundary haze from vegetation fires in Southeast Asia. Agric. Ecosyst. Environ. 2004, 104, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Margono, B.A.; Turubanova, S.; Zhuravleva, I.; Potapov, P.; Tyukavina, A.; Baccini, A.; Goetz, S.; Hansen, M.C. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. 2012, 7, 034010. [Google Scholar] [CrossRef]
- Miettinen, J.; Hooijer, A.; Shi, C.; Tollenaar, D.; Vernimmen, R.; Liew, S.C.; Malins, C.; Page, S.E. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. GCB Bioenergy 2012, 4, 908–918. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.D.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Jayarathne, T.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; Blake, D.R.; Simpson, I.J. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2016, 16, 11711–11732. [Google Scholar] [CrossRef] [Green Version]
- Ballhorn, U.; Siegert, F.; Mason, M.; Limin, S. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc. Natl. Acad. Sci. USA 2009, 106, 21213–21218. [Google Scholar] [CrossRef] [Green Version]
- Putra, E.I.; Hayasaka, H.; Takahashi, H.; Usup, A. Recent peat fire activity in the mega rice project area Central Kalimantan Indonesia. J. Disaster Res. 2008, 3, 334–341. [Google Scholar] [CrossRef]
- Jaenicke, J.; Englhart, S.; Siegert, F. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery. J Environ. Manag. 2011, 92, 630–638. [Google Scholar] [CrossRef]
- The Climate Prediction Center/National Weather Service. Historical El Nino/La Niña Episodes (1950–present). Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 19 November 2019).
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota: Garretson, SD, USA, 2015. [CrossRef]
- Miettinen, J.; Liew, S.C. Status of peatland degradation and development in Sumatra and Kalimantan. Ambio 2010, 39, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Goldammer, J.G.; Seibert, B. The impact of droughts and forest fires on tropical lowland rain forest of East Kalimantan. In Fire in the Tropical Biota; Springer: Berlin/Heidelberg, Germany, 1990; pp. 11–31. [Google Scholar]
- Cattau, M.E.; Harrison, M.E.; Shinyo, I.; Tungau, S.; Uriarte, M.; DeFries, R. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Chang. 2016, 39, 205–219. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; Van Der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [Google Scholar] [CrossRef]
- Van der Werf, G. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl. Acad. Sci. USA. 2008, 105, 20350–20355. [Google Scholar] [CrossRef] [Green Version]
- Blackham, G.V.; Webb, E.L.; Corlett, R.T. Natural regeneration in a degraded tropical peatland, Central Kalimantan, Indonesia: Implications for forest restoration. For. Ecol. Manag. 2014, 324, 8–15. [Google Scholar] [CrossRef]
- Jayarathne, T.; Stockwell, C.E.; Gilbert, A.A.; Daugherty, K.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.J.A.C.; et al. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2018, 18, 2585. [Google Scholar] [CrossRef] [Green Version]
- MoEF. Sipongi, Karhutla Sistem. Available online: http://sipongi.menlhk.go.id/hotspot/luas_kebakaran (accessed on 20 January 2019).
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS—Landsat fusion for large area 30 m burned area mapping. Remote Sens. Environ. 2015, 161, 27–42. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Boschetti, L.; Giglio, L.; Yan, L.; Zhang, H.H.; Li, Z.J. Landsat-8 and Sentinel-2 burned area mapping-A combined sensor multi-temporal change detection approach. Remote Sens. Environ. 2019, 231, 111254. [Google Scholar] [CrossRef]
- Lohberger, S.; Stängel, M.; Atwood, E.C.; Siegert, F. Spatial evaluation of Indonesia’s 2015 fire affected area and estimated carbon emissions using Sentinel-1. Glob. Chang. Biol. 2017. [Google Scholar] [CrossRef]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
LULC Groups | LULC Types | Description |
---|---|---|
Forest | Pristine peat swamp forest (PSF) | PSF with no clear signs of human intervention. Dominant tree species include Dipterocarp sp., Gonysylus sp. and Dyera sp. |
Degraded PSF | PSF with clear evidence of disturbance (e.g., logging), typically in the form of logging tracks and canals and/or opened canopy. In addition to PSF species, tall shrubs, such as Melaleuca leucadendron are also prevalent. | |
Native-vegetated areas | Tall shrub/secondary forest | Shrubland or secondary forest with an average height above 2 m. Dominant species include Melaleuca leucadendron and Macaranga sp. |
Ferns/low shrub | Ferns and grass or shrubland with average height less than 2 m. Dominant species include Stenochlaena palustris, Blechnum indicum, Pandanus helicopus, and Melastoma malabathricum. | |
Agricultural areas | Smallholder area | Mosaic of housing, agricultural fields, plantations, gardens, fallow shrubland, etc. Note that the name of the class refers to the patchy landscape patterns, typical in smallholder dominated areas but the actual land tenure of the areas is unknown. |
Industrial plantations | Large-scale industrial plantations assumed to have been already planted with the plantation species. Mainly oil palm (Elaeis guineensis) and pulp wood (Acacia sp.). | |
Other LULC types | Water | Permanent water bodies. This class also includes fish and crab farming ponds. |
Seasonal water | Areas that are inundated part of the year. Typically, either extremely degraded areas or flood zones of rivers. This class also includes smallholder mining sites. | |
Built-up area | Towns, industrial areas, etc. | |
Cleared/burned area | Open area with no vegetation, including recently burned areas. | |
Mangrove | Areas determined to be mangrove forest in the satellite image interpretation although located within peatland areas of maps used in this study. |
Percentage of Area Burned and Surface Affected Fires | Sumatra | Kalimantan | Kalimantan and Sumatra | ||||||
---|---|---|---|---|---|---|---|---|---|
2001–2007 | 2008–2018 | 2001–2018 | 2001–2007 | 2008–2018 | 2001–2018 | 2001–2007 | 2008–2018 | 2001–2018 | |
Surface area affected fires (%) | |||||||||
• Both the peatlands and non-peatlands | 4.8 | 4.8 | 7.9 | 6.5 | 5.4 | 9.4 | 5.7 | 5.1 | 8.7 |
• Peatlands only | 13.4 | 15.9 | 23.6 | 19.3 | 20.8 | 28.6 | 16.0 | 18.1 | 25.8 |
1. All burned areas including both the peatlands and non-peatlands | |||||||||
Accumulated area burned (%) | 6.1 | 6.3 | 12.4 | 9.0 | 7.7 | 16.6 | 7.6 | 7.0 | 14.6 |
APAB (%) | 0.9 | 0.6 | 0.7 | 1.4 | 0.7 | 1.0 | 1.2 | 0.7 | 0.8 |
FRI (years) | 107 | 170 | 139 | 72 | 140 | 104 | 85 | 153 | 118 |
2.All burned areas in the peatlands only | |||||||||
Accumulated area burned (%) | 16.9 | 21.4 | 38.3 | 29.5 | 32.7 | 62.3 | 22.5 | 26.4 | 49.0 |
• Burned once | 10.4 | 11.8 | 14.7 | 12.1 | 13.0 | 13.5 | 11.2 | 12.4 | 14.1 |
• Burned twice | 4.9 | 6.0 | 10.9 | 9.6 | 9.5 | 12.8 | 7.0 | 7.6 | 11.7 |
• Burned more than twice * | 1.6 | 3.6 | 12.7 | 7.8 | 10.2 | 36.0 | 4.3 | 6.5 | 23.1 |
APAB (%) | 2.6 | 2.0 | 2.2 | 4.5 | 3.0 | 3.6 | 3.5 | 2.5 | 2.8 |
FRI (years) | 38 | 50 | 45 | 22 | 33 | 28 | 29 | 41 | 35 |
APAB in recurring * fires only (%) | 1.4 | 1.5 | 1.9 | 4.0 | 2.9 | 3.3 | 3.0 | 2.3 | 2.7 |
FRI in recurring * fires only (years) | 70 | 65 | 52 | 25 | 35 | 30 | 34 | 44 | 37 |
3. All burned areas in the non-peatlands only | |||||||||
Accumulated area burned (%) | 4.1 | 3.7 | 7.8 | 6.5 | 4.6 | 11.1 | 5.4 | 4.2 | 9.6 |
APAB (%) | 0.6 | 0.3 | 0.5 | 1.0 | 0.4 | 0.6 | 0.8 | 0.4 | 0.6 |
FRI (years) | 157 | 294 | 221 | 100 | 233 | 155 | 120 | 257 | 180 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetrita, Y.; Cochrane, M.A. Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands. Remote Sens. 2020, 12, 5. https://doi.org/10.3390/rs12010005
Vetrita Y, Cochrane MA. Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands. Remote Sensing. 2020; 12(1):5. https://doi.org/10.3390/rs12010005
Chicago/Turabian StyleVetrita, Yenni, and Mark A. Cochrane. 2020. "Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands" Remote Sensing 12, no. 1: 5. https://doi.org/10.3390/rs12010005
APA StyleVetrita, Y., & Cochrane, M. A. (2020). Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands. Remote Sensing, 12(1), 5. https://doi.org/10.3390/rs12010005